|
- %
- % Problem 2a: Nonlinear system roll model parameter estimation without disturbance
- %
- clear
-
- % True system parameters
- a1 = 2.0;
- a2 = 1.0;
- a3 = 0.5;
- b = 2.0;
-
- % Simulation setup
- Ts = 0.001;
- T_total = 30;
- t = 0:Ts:T_total;
- N = length(t);
-
- % Reference trajectory: step profile
- r_d = zeros(1, N);
- r_d(t >= 10 & t < 20) = pi/10;
-
- % Smooth bound phi(t)
- phi0 = 1.5;
- phi_inf = 0.05;
- lambda = 0.5;
- phi = (phi0 - phi_inf) * exp(-lambda * t) + phi_inf;
-
- % Control parameters
- k1 = 1.0;
- k2 = 1.0;
- rho = 1.0;
-
- % Initial conditions
- r = zeros(1, N);
- dr = zeros(1, N);
- ddr = zeros(1, N);
-
- % Parameter estimation setup
- theta_hat = zeros(4, N);
- theta_hat(:,1) = [1; 1; 1; 1];
- gamma = 0.66;
-
- % Output storage for control input and errors
- alpha = zeros(1, N);
- u = zeros(1, N);
-
- for k = 1:N-1
- % Compute normalized errors
- z1 = (r(k) - r_d(k)) / phi(k);
- z1 = max(min(z1, 0.999), -0.999);
- alpha(k) = -k1 * log((1 + z1) / (1 - z1));
-
- z2 = (dr(k) - alpha(k)) / rho;
- z2 = max(min(z2, 0.999), -0.999);
- u(k) = -k2 * log((1 + z2) / (1 - z2));
-
- % True system dynamics
- phi_true = [-dr(k); -sin(r(k)); dr(k)^2 * sin(2*r(k)); u(k)];
- ddr(k) = a1 * phi_true(1) + a2 * phi_true(2) + a3 * phi_true(3) + b * phi_true(4);
-
- % Integrate dynamics
- dr(k+1) = dr(k) + Ts * ddr(k);
- r(k+1) = r(k) + Ts * dr(k);
-
- % Estimation
- phi_est = phi_true; % same form
- y = ddr(k);
- y_hat = theta_hat(:,k)' * phi_est;
- e = y - y_hat;
- theta_hat(:,k+1) = theta_hat(:,k) + Ts * gamma * e * phi_est;
- end
-
- % Final estimates
- fprintf('\n2a: Final estimated parameters:\n');
- fprintf('a1: %.4f, a2: %.4f, a3: %.4f, b: %.4f\n', theta_hat(1,end), theta_hat(2,end), theta_hat(3,end), theta_hat(4,end));
-
- % Plot parameter estimates
- figure('Name', 'Problem 2a - Parameter Estimation', 'Position', [100, 100, 1280, 860]);
- sgtitle('Nonlinear Roll System - Parameter Estimation');
-
- subplot(2,1,1);
- plot(t, theta_hat', 'LineWidth', 1.4);
- legend('a_1', 'a_2', 'a_3', 'b');
- ylabel('\theta estimates'); grid on; title('Εκτιμήσεις παραμέτρων');
-
- subplot(2,1,2);
- plot(t, r, 'b', t, r_d, '--r', 'LineWidth', 1.4);
- legend('r(t)', 'r_d(t)');
- ylabel('Roll angle [rad]'); xlabel('Time [s]'); grid on; title('Παρακολούθηση τροχιάς');
-
- if ~exist('output', 'dir')
- mkdir('output');
- end
- saveas(gcf, 'output/Problem2a_estimation.png');
|