% % Problem 2a: Nonlinear system roll model parameter estimation without disturbance % clear % True system parameters a1 = 2.0; a2 = 1.0; a3 = 0.5; b = 2.0; % Simulation setup Ts = 0.001; T_total = 30; t = 0:Ts:T_total; N = length(t); % Reference trajectory: step profile r_d = zeros(1, N); r_d(t >= 10 & t < 20) = pi/10; % Smooth bound phi(t) phi0 = 1.5; phi_inf = 0.05; lambda = 0.5; phi = (phi0 - phi_inf) * exp(-lambda * t) + phi_inf; % Control parameters k1 = 1.0; k2 = 1.0; rho = 1.0; % Initial conditions r = zeros(1, N); dr = zeros(1, N); ddr = zeros(1, N); % Parameter estimation setup theta_hat = zeros(4, N); theta_hat(:,1) = [1; 1; 1; 1]; gamma = 0.66; % Output storage for control input and errors alpha = zeros(1, N); u = zeros(1, N); for k = 1:N-1 % Compute normalized errors z1 = (r(k) - r_d(k)) / phi(k); z1 = max(min(z1, 0.999), -0.999); alpha(k) = -k1 * log((1 + z1) / (1 - z1)); z2 = (dr(k) - alpha(k)) / rho; z2 = max(min(z2, 0.999), -0.999); u(k) = -k2 * log((1 + z2) / (1 - z2)); % True system dynamics phi_true = [-dr(k); -sin(r(k)); dr(k)^2 * sin(2*r(k)); u(k)]; ddr(k) = a1 * phi_true(1) + a2 * phi_true(2) + a3 * phi_true(3) + b * phi_true(4); % Integrate dynamics dr(k+1) = dr(k) + Ts * ddr(k); r(k+1) = r(k) + Ts * dr(k); % Estimation phi_est = phi_true; % same form y = ddr(k); y_hat = theta_hat(:,k)' * phi_est; e = y - y_hat; theta_hat(:,k+1) = theta_hat(:,k) + Ts * gamma * e * phi_est; end % Final estimates fprintf('\n2a: Final estimated parameters:\n'); fprintf('a1: %.4f, a2: %.4f, a3: %.4f, b: %.4f\n', theta_hat(1,end), theta_hat(2,end), theta_hat(3,end), theta_hat(4,end)); % Plot parameter estimates figure('Name', 'Problem 2a - Parameter Estimation', 'Position', [100, 100, 1280, 860]); sgtitle('Nonlinear Roll System - Parameter Estimation'); subplot(2,1,1); plot(t, theta_hat', 'LineWidth', 1.4); legend('a_1', 'a_2', 'a_3', 'b'); ylabel('\theta estimates'); grid on; title('Εκτιμήσεις παραμέτρων'); subplot(2,1,2); plot(t, r, 'b', t, r_d, '--r', 'LineWidth', 1.4); legend('r(t)', 'r_d(t)'); ylabel('Roll angle [rad]'); xlabel('Time [s]'); grid on; title('Παρακολούθηση τροχιάς'); if ~exist('output', 'dir') mkdir('output'); end saveas(gcf, 'output/Problem2a_estimation.png');