|
- function [a, b, k, n] = min_golden_section(fun_expression, alpha, beta, epsilon, lambda)
- % Golden section method for finding the local minimum of a function.
- %
- % fun_expr: (symbolic expression over x) The symbolic expression of the
- % objective function
- % alpha: (number) The starting point of the interval in which we seek
- % for minimum
- % beta: (number) The ending point of the interval in which we seek
- % for minimum
- % epsilon: (number) The epsilon value
- % **note:**
- % epsilon in not used in this method, but it is part of the
- % method calling interface.
- % lambda: (number) The lambda value (accuracy)
- %
- % return:
- % a: (vector) Starting points of the interval for each iteration
- % b: (vector) Ending points of the interval for each iteration
- % k: (number) The number of iterations
- % n: (number) The calls of objective function fun_expr
- %
-
- % Error checking
- if alpha > beta || lambda <= 0
- error ('Input criteria not met')
- end
-
- % Init variables
- gamma = 0.618;
- a = alpha;
- b = beta;
- fun = matlabFunction(fun_expression);
-
- % calculate x1, x2 of the first iteration, since the following iteration
- % will not require to calculate both
- k=1;
- x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
- x_2 = a(k) + gamma*(b(k) - a(k));
-
- f1 = fun(x_1);
- f2 = fun(x_2);
- while b(k) - a(k) > lambda
- % set new search interval
- k = k + 1;
- if f1 < f2
- a(k) = a(k-1);
- b(k) = x_2;
- x_2 = x_1;
- f2 = f1;
- x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
- f1 = fun(x_1);
- else
- a(k) = x_1;
- b(k) = b(k-1);
- x_1 = x_2;
- f1 = f2;
- x_2 = a(k) + gamma*(b(k) - a(k));
- f2 = fun(x_2);
- end
- end
-
- % Set objective function calls
- n = k+1;
-
|