function [a, b, k, n] = min_golden_section(fun_expression, alpha, beta, epsilon, lambda) % Golden section method for finding the local minimum of a function. % % fun_expr: (symbolic expression over x) The symbolic expression of the % objective function % alpha: (number) The starting point of the interval in which we seek % for minimum % beta: (number) The ending point of the interval in which we seek % for minimum % epsilon: (number) The epsilon value % **note:** % epsilon in not used in this method, but it is part of the % method calling interface. % lambda: (number) The lambda value (accuracy) % % return: % a: (vector) Starting points of the interval for each iteration % b: (vector) Ending points of the interval for each iteration % k: (number) The number of iterations % n: (number) The calls of objective function fun_expr % % Error checking if alpha > beta || lambda <= 0 error ('Input criteria not met') end % Init variables gamma = 0.618; a = alpha; b = beta; fun = matlabFunction(fun_expression); % calculate x1, x2 of the first iteration, since the following iteration % will not require to calculate both k=1; x_1 = a(k) + (1 - gamma)*(b(k) - a(k)); x_2 = a(k) + gamma*(b(k) - a(k)); f1 = fun(x_1); f2 = fun(x_2); while b(k) - a(k) > lambda % set new search interval k = k + 1; if f1 < f2 a(k) = a(k-1); b(k) = x_2; x_2 = x_1; f2 = f1; x_1 = a(k) + (1 - gamma)*(b(k) - a(k)); f1 = fun(x_1); else a(k) = x_1; b(k) = b(k-1); x_1 = x_2; f1 = f2; x_2 = a(k) + gamma*(b(k) - a(k)); f2 = fun(x_2); end end % Set objective function calls n = k+1;