WIP: work 3 report
This commit is contained in:
parent
ed9807b1ca
commit
65363b3717
Binary file not shown.
@ -67,7 +67,7 @@
|
||||
\subsection{Προγραμματιστική προσέγγιση}
|
||||
Για τον προγραμματισμό και εκτέλεση των μεθόδων της παρούσας εργασίας έγινε χρήση της MATLAB.
|
||||
Στον κατάλογο \textbf{scripts}, περιέχονται όλες οι μέθοδοι και οι τεχνικές υπολογισμού βημάτων με τη μορφή συναρτήσεων καθώς και scripts που τις καλούν.
|
||||
Για κάθε μία μέθοδο (ένα θέμα της εργασίας), υπάρχει το αντίστοιχο script που περιέχει τους υπολογισμούς, τις κλήσεις των μεθόδων και τη δημιουργία των διαγραμμάτων.
|
||||
Για κάθε ένα θέμα της εργασίας, υπάρχει το αντίστοιχο script που περιέχει τους υπολογισμούς, τις κλήσεις των μεθόδων και τη δημιουργία των διαγραμμάτων.
|
||||
Για το πρώτο θέμα το αρχείο Script\_1\_SteepDesc.m για το δεύτερο το Script\_2\_SteepDesc\_Proj.m και ούτω καθεξής.
|
||||
Η μέθοδος μέγιστης καθόδου (αρχείο: \textbf{method\_SteepDesc.m}) είναι η ίδια με αυτή της προηγούμενης εργασίας με τη μόνη διαφορά ότι τροποποιήθηκε ώστε η αντικειμενική συνάρτηση να δέχεται διάνυσμα ώς όρισμα και όχι δύο διαφορετικές μεταβλητές $x, y$.
|
||||
Αυτό ακολουθήθηκε και για την έκδοση με προβολή και φυσικά είχε αντίκτυπο και στις υπόλοιπες συναρτήσεις, όπως η κλίση ή ο Εσσιανός.
|
||||
@ -80,19 +80,19 @@
|
||||
Αυτό έχει τη μορφή: \textit{\textbf{gamma\_<method>(f, grad\_f, dk, xk)}}, όπου το \textbf{f} είναι η αντικειμενική συνάρτηση, \textbf{grad\_f} η συνάρτηση κλίσης της, \textbf{dk} η τιμή της συνάρτησης κλίσης στο xk και \textbf{xk} το σημείο ενδιαφέροντος.
|
||||
Έτσι οι μέθοδοι αντιγράφηκαν και εδώ για ολότητα, ακόμα και αν για την παρούσα εργασία χρησιμοποιείται μόνο το σταθερό βήμα $\gamma_k$.
|
||||
|
||||
\subsection{Symbolic expression functions}
|
||||
Μία ακόμη προγραμματιστική τεχνική που ακολουθήθηκε είναι η χρήση \textbf{symbolic expression} για την αναπαράσταση της αντικειμενικής συνάρτησης.
|
||||
Η εξήγηση υπάρχει και στις προηγούμενες εργασίες αλλά την παραθέτουμε εδώ για ολότητα.
|
||||
Ο λόγος που επιλέχθηκε είναι η \textbf{δυνατότητα εξαγωγής ενός symbolic expression που αναπαριστά την κλίση $\nabla f$ και τον Εσσιανό $\nabla^2f$ μιας συνάρτησης} από την MATLAB, κάνοντας χρήση των εντολών \textit{gradient()} και \textit{hessian()}.
|
||||
Αν αντίθετα χρησιμοποιούσαμε απλές συναρτήσεις, πολυώνυμα ή lambdas για την αναπαράσταση των αντικειμενικών συναρτήσεων, τότε για τον υπολογισμό της κλίσης και του Εσσιανού θα έπρεπε:
|
||||
\begin{itemize}
|
||||
\item Είτε να υπολογίζαμε αριθμητικά τις παραγώγους gradient και hessian μέσα στις μεθόδους, κάτι που θα εισήγαγε \textit{\textbf{αχρείαστο αριθμητικό σφάλμα}}.
|
||||
\item Είτε να κάναμε χρήση δύο επιπλέων συναρτήσεων (ή πολυωνύμων) για την αναπαράσταση τους, κάτι που ουσιαστικά θα δημιουργούσε \textit{\textbf{πλεονασμό πληροφορίας εισόδου}} και άρα μεγαλύτερη πιθανότητα να κάνουμε λάθος.
|
||||
\end{itemize}
|
||||
Η αναπαράσταση όμως με χρήση symbolic expression είναι πιο “βαριά” όταν χρειάζεται να υπολογίσουμε την τιμή μιας συνάρτησης σε κάποιο σημείο (subs(expr, number)).
|
||||
Αυτό είναι κάτι που χρειάζεται εκτενώς στον κώδικά μας.
|
||||
Για το λόγο αυτό, ενώ η συνάρτηση δίνεται ως symbolic expression, μέσω αυτής υπολογίζονται αυτόματα η κλίση, ο Εσσιανός αλλά και οι “κανονικές” συναρτήσεις MATLAB που τις υλοποιούν.
|
||||
Έτσι έχουμε την ακριβή αναπαράσταση της κλίσης και του Εσσιανού ως συναρτήσεις χωρίς να πληρώνουμε το κόστος της subs().
|
||||
%\subsection{Symbolic expression functions}
|
||||
%Μία ακόμη προγραμματιστική τεχνική που ακολουθήθηκε είναι η χρήση \textbf{symbolic expression} για την αναπαράσταση της αντικειμενικής συνάρτησης.
|
||||
%Η εξήγηση υπάρχει και στις προηγούμενες εργασίες αλλά την παραθέτουμε εδώ για ολότητα.
|
||||
%Ο λόγος που επιλέχθηκε είναι η \textbf{δυνατότητα εξαγωγής ενός symbolic expression που αναπαριστά την κλίση $\nabla f$ και τον Εσσιανό $\nabla^2f$ μιας συνάρτησης} από την MATLAB, κάνοντας χρήση των εντολών \textit{gradient()} και \textit{hessian()}.
|
||||
%Αν αντίθετα χρησιμοποιούσαμε απλές συναρτήσεις, πολυώνυμα ή lambdas για την αναπαράσταση των αντικειμενικών συναρτήσεων, τότε για τον υπολογισμό της κλίσης και του Εσσιανού θα έπρεπε:
|
||||
%\begin{itemize}
|
||||
% \item Είτε να υπολογίζαμε αριθμητικά τις παραγώγους gradient και hessian μέσα στις μεθόδους, κάτι που θα εισήγαγε \textit{\textbf{αχρείαστο αριθμητικό σφάλμα}}.
|
||||
% \item Είτε να κάναμε χρήση δύο επιπλέων συναρτήσεων (ή πολυωνύμων) για την αναπαράσταση τους, κάτι που ουσιαστικά θα δημιουργούσε \textit{\textbf{πλεονασμό πληροφορίας εισόδου}} και άρα μεγαλύτερη πιθανότητα να κάνουμε λάθος.
|
||||
%\end{itemize}
|
||||
%Η αναπαράσταση όμως με χρήση symbolic expression είναι πιο “βαριά” όταν χρειάζεται να υπολογίσουμε την τιμή μιας συνάρτησης σε κάποιο σημείο (subs(expr, number)).
|
||||
%Αυτό είναι κάτι που χρειάζεται εκτενώς στον κώδικά μας.
|
||||
%Για το λόγο αυτό, ενώ η συνάρτηση δίνεται ως symbolic expression, μέσω αυτής υπολογίζονται αυτόματα η κλίση, ο Εσσιανός αλλά και οι “κανονικές” συναρτήσεις MATLAB που τις υλοποιούν.
|
||||
%Έτσι έχουμε την ακριβή αναπαράσταση της κλίσης και του Εσσιανού ως συναρτήσεις χωρίς να πληρώνουμε το κόστος της subs().
|
||||
|
||||
\section{Απεικόνιση της συνάρτησης}
|
||||
Η συνάρτηση με την οποία ασχολούμαστε στην παρούσα εργασία είναι η:
|
||||
@ -110,15 +110,15 @@
|
||||
Για να πάρουμε μια καλύτερη αίσθηση για το που βρίσκεται το τοπικό ελάχιστο της $f$, παρακάτω παραθέτουμε ένα γράφημα με τις ισοβαρείς καμπύλες της $f$.
|
||||
\InsertFigure{H}{0.8}{fig:plotContour}{../scripts/figures/Plot_Contour.png}{Ισοβαρείς της f}
|
||||
|
||||
Από το παραπάνω σχήμα \ref{fig:plotContour} επιβεβαιώνεται και γραφικά το ελάχιστο στο σημείο $(0,0)$.
|
||||
Από το παραπάνω σχήμα \ref{fig:plotContour} φαίνονται και γραφικά οι μικρές κλίσης που παρουσιάζει η συνάρτηση κοντά στο ελάχιστο σημείο $(0,0)$.
|
||||
Τα διαγράμματα για τη μέθοδο δημιουργούνται εκτελώντας το αρχείο \textbf{Script\_0\_Plots.m}
|
||||
|
||||
\section{Μέθοδος Μέγιστης Καθόδου χωρίς περιορισμούς - Θέμα 1}
|
||||
Εφαρμόζοντας την μέθοδο μέγιστης καθόδου από την προηγούμενη εργασία, με ακρίβεια $\epsilon = 0.001$, για τα βήματα $\gamma_k$ της εκφώνησης, παρατηρούμε ότι η μέθοδος συγκλίνει στο ελάχιστο για μικρά $\gamma_k$ ενώ αποκλίνει για μεγάλα \boldmath$\gamma_k > 0.34$\unboldmath.
|
||||
Εφαρμόζοντας την μέθοδο μέγιστης καθόδου από την προηγούμενη εργασία, με ακρίβεια $\epsilon = 0.001$, για τα βήματα $\gamma_k$ της εκφώνησης, παρατηρούμε ότι η μέθοδος συγκλίνει στο ελάχιστο για μικρά $\gamma_k$ ενώ αποκλίνει για μεγάλα \boldmath$\gamma_k \geq 0.34$\unboldmath.
|
||||
Από τις δοκιμές φαίνεται ότι το σημείο εκκίνησης δεν παίζει ρόλο και για αυτό επιλέξαμε να παραθέσουμε τα ευρήματά μας από το σημείο $(5,-5)$, για αντιπαραβολή με το επόμενο βήμα της εκφώνησης.
|
||||
\InsertFigure{H}{0.6}{fig:StDes_Iter_o_gamma_2}{../scripts/figures/StDes_Iter_o_gamma_1.png}{Αριθμός επαναλήψεων για διαφορετικές τιμές $\gamma_k$ [Μέγιστη Κάθοδος].}
|
||||
Επίσης παρατηρούμε ότι για μικρό \boldmath$\gamma_k = 0.1$ η σύγκλιση είναι ομαλή, ενώ για μεγάλο $\gamma_k = 0.3$ \unboldmath παρουσιάζει ταλάντωση κατά την σύγκλιση.
|
||||
Παρακάτω παραθέτουμε την πορεία σύγκλισης και απόκλισης για τις διαφορετικές τιμές του $\gamma_k$.
|
||||
Παρακάτω στο σχήμα \ref{fig:StDes_gamma} παραθέτουμε την πορεία σύγκλισης και απόκλισης για τις διαφορετικές τιμές του $\gamma_k$.
|
||||
|
||||
\begin{figure}[ht]
|
||||
\centering
|
||||
@ -157,7 +157,56 @@
|
||||
\label{fig:StDes_gamma}
|
||||
\end{figure}
|
||||
|
||||
Απόδειξη...
|
||||
\subsection{Μαθηματική ανάλυση}
|
||||
Τα παραπάνω αποτελέσματα επιβεβαιώνονται και θεωρητικά.
|
||||
Πιο συγκεκριμένα για τη σύγκλιση της μεθόδου μέγιστης καθόδου όπου το κάθε σημείο υπολογίζεται από την σχέση \boldmath$x_{k+1} = x_k - \gamma_k \nabla f(x_k)$, \unboldmath πρέπει να ισχύουν:
|
||||
\begin{enumerate}
|
||||
\item H $f$ να είναι κυρτή.
|
||||
\item Η $f$ να είναι συνεχής και διαφορίσιμη και η κλίση της υπολογίσιμη.
|
||||
\item Για το βήμα υπολογισμού να ισχύει η σχέση:
|
||||
\begin{equation} 0 < \gamma_k < \frac{2}{L} \end{equation} \label{eq:gammaLimmit}
|
||||
Όπου $L$ το άνω φράγμα της Lipschitz για την κλίση $\nabla f(x)$ (αν είναι γνωστή), η οποία είναι η μέγιστη ιδιοτιμή του Εσσιανού και δίνεται από τη σχέση:
|
||||
\begin{equation}
|
||||
L = \max_{x} \{\lambda_{max} (H(x))\}, \quad H(x) = \begin{bmatrix} \dfrac{\theta^2 f(x)}{\theta x_i \theta x_j} \end{bmatrix}
|
||||
\end{equation}
|
||||
\label{eq:Lipschitz}
|
||||
\end{enumerate}
|
||||
\par
|
||||
Έτσι για τη δική μας περίπτωση έχουμε:
|
||||
Η κλίση της $f(x)$ είναι:
|
||||
\[
|
||||
\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x1} \\ \frac{\partial f}{\partial x2} \end{bmatrix} = \begin{bmatrix} \frac{2}{3}x_1 \\ 6x_2 \end{bmatrix}
|
||||
\]
|
||||
Ο Εσσιανός πίνακας $H(x)$ της $f(x)$ είναι:
|
||||
\[
|
||||
H(x) =
|
||||
\begin{bmatrix}
|
||||
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\
|
||||
\frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2}
|
||||
\end{bmatrix}
|
||||
=
|
||||
\begin{bmatrix}
|
||||
\frac{2}{3} & 0 \\ 0 & 6
|
||||
\end{bmatrix}
|
||||
\]
|
||||
Και εφόσον είναι διαγώνιος οι ιδιοτιμές του είναι οι τιμές της διαγωνίου. Δηλαδή:
|
||||
\[
|
||||
\det(H - \lambda I) = 0 \Leftrightarrow \\
|
||||
\det(\begin{bmatrix}\frac{2}{3} - \lambda & 0 \\ 0 & 6 - \lambda \end{bmatrix}) = 0 \Leftrightarrow \\
|
||||
\left(\frac{2}{3} - \lambda\right)(6 - \lambda) = 0 \Leftrightarrow \\
|
||||
\lambda_{\min} = \frac{2}{3}, \quad \lambda_{\max} = 6.
|
||||
\]
|
||||
Έτσι από τις εξισώσεις \ref{eq:gammaLimmit} και \ref{eq:Lipschitz} προκύπτει τελικά:
|
||||
\boldmath\[ 0 < \gamma_k < \frac{1}{3} \]\unboldmath
|
||||
Βλέπουμε ότι από την ανάλυσή μας επιβεβαιώνουμε τις τιμές που βρήκαμε εμπειρικά από την εκτέλεση του αλγορίθμου.
|
||||
|
||||
\subsubsection{Εναλλακτικά}
|
||||
Αν θέλαμε να βρούμε το κριτήριο σύγκλισης για το βήμα $\gamma_k$ ξεχωριστά για την κάθε διάσταση θα μπορούσαμε να θεωρήσουμε για 3ο κριτήριο πως για να συγκλίνει η μέθοδος θα πρέπει να ισχύει:
|
||||
\[
|
||||
\norm{\frac{x_{k+1}}{x_k}} < 1
|
||||
\]
|
||||
Από την παραπάνω εξίσωση προκείπτει:
|
||||
|
||||
|
||||
\section{Μέθοδος Μέγιστης Καθόδου με προβολή}
|
||||
Πριν περάσουμε στις υπόλοιπες απαιτήσεις της εργασίας θα θέλαμε να παραθέσουμε κάποιες πληροφορίες για την υλοποίηση της μεθόδου μέγιστης καθόδου με προβολή (αρχείο: \textbf{method\_SteepDesc\_Proj.m}).
|
||||
|
Loading…
x
Reference in New Issue
Block a user