|
- %
- % Optimization Techniques Work 3 report
- %
- % authors:
- % Χρήστος Χουτουρίδης ΑΕΜ 8997
- % cchoutou@ece.auth.gr
-
-
- \documentclass[a4paper, 11pt]{AUTHReport}
-
- % Document configuration
- \AuthorName{Χρήστος Χουτουρίδης}
- \AuthorAEM{8997}
- \AuthorMail{cchoutou@ece.auth.gr}
-
- %\CoAuthorName{CoAuthor Name}
- %\CoAuthorAEM{AEM}
- %\CoAuthorMail{CoAuthor Mail}
-
- % \WorkGroup{Ομάδα Χ}
-
- \DocTitle{3η Εργαστηριακή Άσκηση}
- \DocSubTitle{Μέθοδος Μέγιστης Καθόδου με Προβολή}
-
- \Department{Τμήμα ΗΜΜΥ. Τομέας Ηλεκτρονικής}
- \ClassName{Τεχνικές Βελτιστοποίησης}
-
- \InstructorName{Γ. Ροβιθάκης}
- \InstructorMail{rovithak@auth.gr}
-
- \CoInstructorName{Θ. Αφορόζη}
- \CoInstructorMail{taforozi@ece.auth.gr}
-
- \CurrentDate{\today}
-
-
- \usepackage{enumitem}
- \usepackage{tabularx}
- \usepackage{array}
- \usepackage{amssymb}
- \usepackage{amsfonts}
- \usepackage{amsmath}
- \usepackage{commath}
-
- \usepackage{float}
- \usepackage[labelformat=empty]{subcaption}
-
- \begin{document}
-
- \InsertTitle
-
- %\tableofcontents
-
- \section{Εισαγωγή}
- Η παρούσα εργασία αφορά το πρόβλημα της ελαχιστοποίησης μιας δοσμένης συνάρτησης πολλών μεταβλητών $f: \mathbb{R}^n \rightarrow \mathbb{R}$ με περιορισμούς χρησιμοποιώντας τη μέθοδο μέγιστης καθόδου με προβολή.
- Η μέθοδος αυτή θα εκτελεστεί σε αντιπαραβολή με την αντίστοιχη μέθοδο χωρίς περιορισμούς από την προηγούμενη εργασία.
- Για το λόγο αυτό χρησιμοποιούμε των κώδικα της προηγούμενης εργασίας με κάποιες τροποποιήσεις, όπως θα δούμε και παρακάτω.
-
- \subsection{Παραδοτέα}
- Τα παραδοτέα της εργασίας αποτελούνται από:
- \begin{itemize}
- \item Την παρούσα αναφορά.
- \item Τον κατάλογο \textbf{scripts/}, που περιέχει τον κώδικα της MATLAB.
- \item Το \href{https://git.hoo2.net/hoo2/OptimizationTechniques/src/branch/master/Work%203}{σύνδεσμο} με το αποθετήριο που περιέχει όλο το project με τον κώδικα της MATLAB, της αναφοράς και τα παραδοτέα.
- \end{itemize}
-
- \subsection{Προγραμματιστική προσέγγιση}
- Για τον προγραμματισμό και εκτέλεση των μεθόδων της παρούσας εργασίας έγινε χρήση της MATLAB.
- Στον κατάλογο \textbf{scripts}, περιέχονται όλες οι μέθοδοι και οι τεχνικές υπολογισμού βημάτων με τη μορφή συναρτήσεων καθώς και scripts που τις καλούν.
- Για κάθε ένα θέμα της εργασίας, υπάρχει το αντίστοιχο script που περιέχει τους υπολογισμούς, τις κλήσεις των μεθόδων και τη δημιουργία των διαγραμμάτων.
- Για το πρώτο θέμα το αρχείο Script\_1\_SteepDesc.m για το δεύτερο το Script\_2\_SteepDesc\_Proj.m και ούτω καθεξής.
- Η μέθοδος μέγιστης καθόδου (αρχείο: \textbf{method\_SteepDesc.m}) είναι η ίδια με αυτή της προηγούμενης εργασίας με τη μόνη διαφορά ότι τροποποιήθηκε ώστε η αντικειμενική συνάρτηση να δέχεται διάνυσμα ώς όρισμα και όχι δύο διαφορετικές μεταβλητές $x, y$.
- Αυτό ακολουθήθηκε και για την έκδοση με προβολή και φυσικά είχε αντίκτυπο και στις υπόλοιπες συναρτήσεις, όπως η κλίση ή ο Εσσιανός.
- Στην παρούσα εργασία η υλοποίηση του κώδικα ακολουθεί την προσέγγιση των προηγούμενων εργασιών.
- Πιο συγκεκριμένα.
-
- \subsection{Μέθοδοι επιλογής βήματος}
- Εφόσον στην προηγούμενη εργασία οι μέθοδοι επιλογής βήματος ήταν ανεξάρτητες από την μέθοδο υπολογισμού του ελάχιστου και εφόσον χρησιμοποιούμε τον ίδιο κώδικά και στην παρούσα εργασία, αυτός ο τρόπος σχεδίασης παρέμεινε.
- Ουσιαστικά για κάθε ένα τρόπο υπολογισμού του $\gamma_k$, υπάρχει αντίστοιχη συνάρτηση, με κοινό interface.
- Αυτό έχει τη μορφή: \textit{\textbf{gamma\_<method>(f, grad\_f, dk, xk)}}, όπου το \textbf{f} είναι η αντικειμενική συνάρτηση, \textbf{grad\_f} η συνάρτηση κλίσης της, \textbf{dk} η τιμή της συνάρτησης κλίσης στο xk και \textbf{xk} το σημείο ενδιαφέροντος.
- Έτσι οι μέθοδοι αντιγράφηκαν και εδώ για ολότητα, ακόμα και αν για την παρούσα εργασία χρησιμοποιείται μόνο το σταθερό βήμα $\gamma_k$.
-
- %\subsection{Symbolic expression functions}
- %Μία ακόμη προγραμματιστική τεχνική που ακολουθήθηκε είναι η χρήση \textbf{symbolic expression} για την αναπαράσταση της αντικειμενικής συνάρτησης.
- %Η εξήγηση υπάρχει και στις προηγούμενες εργασίες αλλά την παραθέτουμε εδώ για ολότητα.
- %Ο λόγος που επιλέχθηκε είναι η \textbf{δυνατότητα εξαγωγής ενός symbolic expression που αναπαριστά την κλίση $\nabla f$ και τον Εσσιανό $\nabla^2f$ μιας συνάρτησης} από την MATLAB, κάνοντας χρήση των εντολών \textit{gradient()} και \textit{hessian()}.
- %Αν αντίθετα χρησιμοποιούσαμε απλές συναρτήσεις, πολυώνυμα ή lambdas για την αναπαράσταση των αντικειμενικών συναρτήσεων, τότε για τον υπολογισμό της κλίσης και του Εσσιανού θα έπρεπε:
- %\begin{itemize}
- % \item Είτε να υπολογίζαμε αριθμητικά τις παραγώγους gradient και hessian μέσα στις μεθόδους, κάτι που θα εισήγαγε \textit{\textbf{αχρείαστο αριθμητικό σφάλμα}}.
- % \item Είτε να κάναμε χρήση δύο επιπλέων συναρτήσεων (ή πολυωνύμων) για την αναπαράσταση τους, κάτι που ουσιαστικά θα δημιουργούσε \textit{\textbf{πλεονασμό πληροφορίας εισόδου}} και άρα μεγαλύτερη πιθανότητα να κάνουμε λάθος.
- %\end{itemize}
- %Η αναπαράσταση όμως με χρήση symbolic expression είναι πιο “βαριά” όταν χρειάζεται να υπολογίσουμε την τιμή μιας συνάρτησης σε κάποιο σημείο (subs(expr, number)).
- %Αυτό είναι κάτι που χρειάζεται εκτενώς στον κώδικά μας.
- %Για το λόγο αυτό, ενώ η συνάρτηση δίνεται ως symbolic expression, μέσω αυτής υπολογίζονται αυτόματα η κλίση, ο Εσσιανός αλλά και οι “κανονικές” συναρτήσεις MATLAB που τις υλοποιούν.
- %Έτσι έχουμε την ακριβή αναπαράσταση της κλίσης και του Εσσιανού ως συναρτήσεις χωρίς να πληρώνουμε το κόστος της subs().
-
- \section{Απεικόνιση της συνάρτησης}
- Η συνάρτηση με την οποία ασχολούμαστε στην παρούσα εργασία είναι η:
- \boldmath
- \begin{equation}
- f: \mathbb{R}^2 \rightarrow \mathbb{R}, f(x) = \frac{1}{3}{x_1}^2 + 3{x_2}^2, x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
- \end{equation}
- \label{eq:ObjectiveFunction}
- Όπου $ -10 \leq x_1 \leq 5 $ και $ -8 \leq x_2 \leq 12 $ \\
- \unboldmath
- Στο παρακάτω σχήμα \ref{fig:plot3dFunction} φαίνεται η τρισδιάστατη απεικόνιση της συνάρτησης.
- \InsertFigure{!h}{0.8}{fig:plot3dFunction}{../scripts/figures/Plot_Function.png}{Γραφική παράσταση της f}
-
- Από το σχήμα μπορούμε πολύ εύκολα να διακρίνουμε ότι η συνάρτηση είναι κυρτή στο σύνολο των περιορισμών της εκφώνησης $ -10 \leq x_1 \leq 5 $ και $ -8 \leq x_2 \leq 12 $.
- Για να πάρουμε μια καλύτερη αίσθηση για το που βρίσκεται το τοπικό ελάχιστο της $f$, παρακάτω παραθέτουμε ένα γράφημα με τις ισοβαρείς καμπύλες της $f$.
- \InsertFigure{H}{0.8}{fig:plotContour}{../scripts/figures/Plot_Contour.png}{Ισοβαρείς της f}
-
- Από το παραπάνω σχήμα \ref{fig:plotContour} φαίνονται και γραφικά οι μικρές κλίσης που παρουσιάζει η συνάρτηση κοντά στο ελάχιστο σημείο $(0,0)$.
- Τα διαγράμματα για τη μέθοδο δημιουργούνται εκτελώντας το αρχείο \textbf{Script\_0\_Plots.m}
-
- \section{Μέθοδος Μέγιστης Καθόδου χωρίς περιορισμούς - Θέμα 1}
- Εφαρμόζοντας την μέθοδο μέγιστης καθόδου από την προηγούμενη εργασία, με ακρίβεια $\epsilon = 0.001$, για τα βήματα $\gamma_k$ της εκφώνησης, παρατηρούμε ότι η μέθοδος συγκλίνει στο ελάχιστο για μικρά $\gamma_k$ ενώ αποκλίνει για μεγάλα \boldmath$\gamma_k \geq 0.34$\unboldmath.
- Από τις δοκιμές φαίνεται ότι το σημείο εκκίνησης δεν παίζει ρόλο και για αυτό επιλέξαμε να παραθέσουμε τα ευρήματά μας από το σημείο $(5,-5)$, για αντιπαραβολή με το επόμενο βήμα της εκφώνησης.
- \InsertFigure{H}{0.6}{fig:StDes_Iter_o_gamma_2}{../scripts/figures/StDes_Iter_o_gamma_1.png}{Αριθμός επαναλήψεων για διαφορετικές τιμές $\gamma_k$ [Μέγιστη Κάθοδος].}
- Επίσης παρατηρούμε ότι για μικρό \boldmath$\gamma_k = 0.1$ η σύγκλιση είναι ομαλή, ενώ για μεγάλο $\gamma_k = 0.3$ \unboldmath παρουσιάζει ταλάντωση κατά την σύγκλιση.
- Παρακάτω στο σχήμα \ref{fig:StDes_gamma} παραθέτουμε την πορεία σύγκλισης και απόκλισης για τις διαφορετικές τιμές του $\gamma_k$.
-
- \begin{figure}[ht]
- \centering
- % First row
- \begin{subfigure}{0.45\textwidth}
- \centering
- \includegraphics[width=\linewidth]{../scripts/figures/StDes_gamma_0.1.png}
- \caption{$\gamma_k = 0.1$}
- \label{fig:StDes_gamma_0.1}
- \end{subfigure}
- \hfill
- \begin{subfigure}{0.45\textwidth}
- \centering
- \includegraphics[width=\linewidth]{../scripts/figures/StDes_gamma_0.3.png}
- \caption{$\gamma_k = 0.3$}
- \label{fig:StDes_gamma_0.3}
- \end{subfigure}
-
- % Second row
- \vspace{1em}
- \begin{subfigure}{0.45\textwidth}
- \centering
- \includegraphics[width=\linewidth]{../scripts/figures/StDes_gamma_3.png}
- \caption{$\gamma_k = 3$}
- \label{fig:StDes_gamma_3}
- \end{subfigure}
- \hfill
- \begin{subfigure}{0.45\textwidth}
- \centering
- \includegraphics[width=\linewidth]{../scripts/figures/StDes_gamma_5.png}
- \caption{$\gamma_k = 5$}
- \label{fig:StDes_gamma_5}
- \end{subfigure}
-
- \caption{Σύγκριση της μεθόδου Steepest descent για διαφορετικά $\gamma_k$}
- \label{fig:StDes_gamma}
- \end{figure}
-
- \subsection{Μαθηματική ανάλυση}
- Τα παραπάνω αποτελέσματα επιβεβαιώνονται και θεωρητικά.
- Πιο συγκεκριμένα για τη σύγκλιση της μεθόδου μέγιστης καθόδου όπου το κάθε σημείο υπολογίζεται από την σχέση \boldmath$x_{k+1} = x_k - \gamma_k \nabla f(x_k)$, \unboldmath πρέπει να ισχύουν:
- \begin{enumerate}
- \item H $f$ να είναι κυρτή.
- \item Η $f$ να είναι συνεχής και διαφορίσιμη και η κλίση της υπολογίσιμη.
- \item Για το βήμα υπολογισμού να ισχύει η σχέση:
- \begin{equation} 0 < \gamma_k < \frac{2}{L} \end{equation} \label{eq:gammaLimmit}
- Όπου $L$ το άνω φράγμα της Lipschitz για την κλίση $\nabla f(x)$ (αν είναι γνωστή), η οποία είναι η μέγιστη ιδιοτιμή του Εσσιανού και δίνεται από τη σχέση:
- \begin{equation}
- L = \max_{x} \{\lambda_{max} (H(x))\}, \quad H(x) = \begin{bmatrix} \dfrac{\theta^2 f(x)}{\theta x_i \theta x_j} \end{bmatrix}
- \end{equation}
- \label{eq:Lipschitz}
- \end{enumerate}
- \par
- Έτσι για τη δική μας περίπτωση έχουμε:
- Η κλίση της $f(x)$ είναι:
- \[
- \nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x1} \\ \frac{\partial f}{\partial x2} \end{bmatrix} = \begin{bmatrix} \frac{2}{3}x_1 \\ 6x_2 \end{bmatrix}
- \]
- Ο Εσσιανός πίνακας $H(x)$ της $f(x)$ είναι:
- \[
- H(x) =
- \begin{bmatrix}
- \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\
- \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2}
- \end{bmatrix}
- =
- \begin{bmatrix}
- \frac{2}{3} & 0 \\ 0 & 6
- \end{bmatrix}
- \]
- Και εφόσον είναι διαγώνιος οι ιδιοτιμές του είναι οι τιμές της διαγωνίου. Δηλαδή:
- \[
- \det(H - \lambda I) = 0 \Leftrightarrow \\
- \det(\begin{bmatrix}\frac{2}{3} - \lambda & 0 \\ 0 & 6 - \lambda \end{bmatrix}) = 0 \Leftrightarrow \\
- \left(\frac{2}{3} - \lambda\right)(6 - \lambda) = 0 \Leftrightarrow \\
- \lambda_{\min} = \frac{2}{3}, \quad \lambda_{\max} = 6.
- \]
- Έτσι από τις εξισώσεις \ref{eq:gammaLimmit} και \ref{eq:Lipschitz} προκύπτει τελικά:
- \boldmath\[ 0 < \gamma_k < \frac{1}{3} \]\unboldmath
- Βλέπουμε ότι από την ανάλυσή μας επιβεβαιώνουμε τις τιμές που βρήκαμε εμπειρικά από την εκτέλεση του αλγορίθμου.
-
- \subsubsection{Εναλλακτικά}
- Αν θέλαμε να βρούμε το κριτήριο σύγκλισης για το βήμα $\gamma_k$ ξεχωριστά για την κάθε διάσταση θα μπορούσαμε να θεωρήσουμε για 3ο κριτήριο πως για να συγκλίνει η μέθοδος θα πρέπει να ισχύει:
- \[
- \norm{\frac{x_{k+1}}{x_k}} < 1
- \]
- Από την παραπάνω εξίσωση προκείπτει:
-
-
- \section{Μέθοδος Μέγιστης Καθόδου με προβολή}
- Πριν περάσουμε στις υπόλοιπες απαιτήσεις της εργασίας θα θέλαμε να παραθέσουμε κάποιες πληροφορίες για την υλοποίηση της μεθόδου μέγιστης καθόδου με προβολή (αρχείο: \textbf{method\_SteepDesc\_Proj.m}).
- Η συνάρτηση αυτή δέχεται ως είσοδο την αντικειμενική συνάρτηση και την συνάρτηση κλίσης καθώς και το σημείο εκκίνησης $x_k$ και το βήμα $s_k$.
- Με τη βοήθεια της συνάρτησης \textit{ProjectionPoint()} \textbf{παίρνει πρώτα την προβολή} του $x_k$ στο διάστημα των περιορισμών αν αυτό χρειάζεται \textbf{και έπειτα εφαρμόζει τον αλγόριθμο}.
- Αυτό σημαίνει ότι μπορεί να χρησιμοποιηθεί και για σημεία εκκίνησης εκτός του συνόλου των περιορισμών.
- Ο αλγόριθμος είναι παρόμοιος με αυτόν της προηγούμενης εργασίας με τη διαφορά ότι η διεύθυνση $d_k$ επιλέγεται από τη σχέση:
- \[
- d_k = Pr_X\{ x_k - s_k \nabla f(x_k)\} - x_k
- \]
- Δηλαδή εφαρμόζουμε πρώτα τη μέθοδο μέγιστης καθόδου με βήμα $s_k$ στην κατεύθυνση $-\nabla f$ και έπειτα προβάλουμε το σημείο στο σύνολο $X$ και χρησιμοποιούμε αυτό ως διεύθυνση με βήμα $\gamma_k$.
-
- \section{Μέθοδος Μέγιστης Καθόδου με προβολή $s_k = 5, \gamma_k = 0.5$ - Θέμα 2}
- Εφαρμόζοντας τη μέθοδο για ακρίβεια $\epsilon = 0.01$, $s_k = 5$ και $\gamma_k = 0.5$ έχουμε:
- \InsertFigure{H}{0.8}{fig:StDesProj_sk_5_gamma_0.5}{../scripts/figures/StDesProj_sk_5_gamma_0.5.png}{Μέθοδος μέγιστης καθόδου με προβολή για $s_k = 5, \gamma_k = 0.5$.}
-
- Παρατηρούμε πως ενώ η μέθοδος ταλαντώνει και δεν συγκλίνει στο ελάχιστο \textbf{όπως και η αντίστοιχη εκτέλεση της μέγιστης καθόδου χωρίς περιορισμούς με το ίδιο} \boldmath$\gamma_k$\unboldmath.
- Παρόλα αυτά όμως, η ταλάντωση λαμβάνει χώρα \textbf{εντός του συνόλου των περιορισμών} της εκφώνησης.
-
- \section{Μέθοδος Μέγιστης Καθόδου με προβολή $s_k = 15, \gamma_k = 0.1$ - Θέμα 3}
- Εφαρμόζοντας τη μέθοδο για ακρίβεια $\epsilon = 0.01$, $s_k = 15$ και $\gamma_k = 0.1$ έχουμε:
- \InsertFigure{H}{0.8}{fig:StDesProj_sk_15_gamma_0.1}{../scripts/figures/StDesProj_sk_15_gamma_0.1.png}{Μέθοδος μέγιστης καθόδου με προβολή για $s_k = 15, \gamma_k = 0.1$.}
-
- Εδώ παρατηρούμε πως ενώ το $\gamma_k$ έχει επιλεγεί στο εύρος που οδηγεί σε σύγκλιση, το αντίστοιχο βήμα $s_k$ είναι πολύ μεγάλο, με αποτέλεσμα η μέθοδος να ταλαντώνει και πάλι.
- Αυτή τη φορά μόνο στον άξονα $x_2$.
-
- \section{Μέθοδος Μέγιστης Καθόδου με προβολή $s_k = 0.1, \gamma_k = 0.2$ - Θέμα 4}
- Αρχικά παρατηρούμε πως το σημείο δεν είναι εφικτό, καθώς είναι εκτός του συνόλου των περιορισμών της εκφώνησης.
- Αυτό βέβαια δεν μας αποτρέπει από την εφαρμογή της μεθόδου, καθώς αρχικά μπορούμε να προβάλουμε το σημείο στο σύνολο και να εφαρμόσουμε τη μέθοδο έπειτα.
- Ακόμα, αυτή τη φορά οι τιμές των βημάτων $s_k, \gamma_k$, έχουν επιλεγεί μέσα στο εύρος για το οποίο έχουμε σύγκλιση, επομένως αναμένουμε η μέθοδος να συγκλίνει στο ελάχιστο.
- Εφαρμόζοντας τη μέθοδο για ακρίβεια $\epsilon = 0.01$ έχουμε:
- \InsertFigure{H}{0.8}{fig:StDesProj_sk_0.1_gamma_0.2}{../scripts/figures/StDesProj_sk_0.1_gamma_0.2.png}{Μέθοδος μέγιστης καθόδου με προβολή για $s_k = 0.1, \gamma_k = 0.2$.}
-
- \section{Συμπεράσματα}
- ...
-
- \end{document}
|