|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- function [a, b, k, n] = min_bisection_der(fun_expression, alpha, beta, epsilon, lambda)
- % Bisection using derivatives method for finding the local minimum of a
- % function.
- %
- % fun_expr: (symbolic expression over x) The symbolic expression of the
- % objective function
- % alpha: (number) The starting point of the interval in which we seek
- % for minimum
- % beta: (number) The ending point of the interval in which we seek
- % for minimum
- % epsilon: (number) The epsilon value
- % **note:**
- % epsilon in not used in this method, but it is part of the
- % method calling interface.
- % lambda: (number) The lambda value (accuracy)
- %
- % return:
- % a: (vector) Starting points of the interval for each iteration
- % b: (vector) Ending points of the interval for each iteration
- % k: (number) The number of iterations
- % n: (number) The calls of objective function fun_expr
- %
-
- % Error checking
- if alpha > beta || lambda <= 0
- error ('Input criteria not met')
- end
-
- % Init output vectors
- a = alpha;
- b = beta;
- dfun = matlabFunction(diff(fun_expression));
-
- k=1;
- while b(k) - a(k) > lambda
- % bisect [a,b]
- x_mid = (a(k) + b(k)) / 2;
-
- % set new search interval
- k = k + 1;
- df = dfun(x_mid);
- if df < 0
- a(k) = x_mid;
- b(k) = b(k-1);
- elseif df > 0
- a(k) = a(k-1);
- b(k) = x_mid;
- else % df == 0
- a(k) = x_mid;
- b(k) = x_mid;
- break;
- end
- end
-
- % Update the objctive function calls. In this case the derivative of the
- % function ;)
- n = k;
|