function [a, b, k, n] = min_bisection_der(fun_expression, alpha, beta, epsilon, lambda) % Bisection using derivatives method for finding the local minimum of a % function. % % fun_expr: (symbolic expression over x) The symbolic expression of the % objective function % alpha: (number) The starting point of the interval in which we seek % for minimum % beta: (number) The ending point of the interval in which we seek % for minimum % epsilon: (number) The epsilon value % **note:** % epsilon in not used in this method, but it is part of the % method calling interface. % lambda: (number) The lambda value (accuracy) % % return: % a: (vector) Starting points of the interval for each iteration % b: (vector) Ending points of the interval for each iteration % k: (number) The number of iterations % n: (number) The calls of objective function fun_expr % % Error checking if alpha > beta || lambda <= 0 error ('Input criteria not met') end % Init output vectors a = alpha; b = beta; dfun = matlabFunction(diff(fun_expression)); k=1; while b(k) - a(k) > lambda % bisect [a,b] x_mid = (a(k) + b(k)) / 2; % set new search interval k = k + 1; df = dfun(x_mid); if df < 0 a(k) = x_mid; b(k) = b(k-1); elseif df > 0 a(k) = a(k-1); b(k) = x_mid; else % df == 0 a(k) = x_mid; b(k) = x_mid; break; end end % Update the objctive function calls. In this case the derivative of the % function ;) n = k;