/*! * \file deque.cpp * \brief * Unit tests for deque * * \copyright Copyright (C) 2020 Christos Choutouridis * *
License
* The MIT License (MIT) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. *
* */ #include //#include #include #include #include #include #ifndef WIN_TRHEADS #include #include #else #include #include #endif namespace Tdeque { using namespace utl; // template // struct is_span : std::false_type {}; // // template // struct is_span> : std::true_type {}; template struct is_std_array : std::false_type {}; template struct is_std_array> : std::true_type {}; template struct has_size_and_data : std::false_type {}; template struct has_size_and_data().size()), decltype(std::declval().data())>> : std::true_type {}; // Concept TEST(Tdeque, concept) { using deque_t = deque; EXPECT_EQ ( std::is_default_constructible::value, true); EXPECT_EQ ( std::is_nothrow_default_constructible::value, true); EXPECT_EQ (!std::is_copy_constructible::value, true); EXPECT_EQ (!std::is_copy_assignable::value, true); // EXPECT_EQ (true, !is_span::value); EXPECT_EQ (true, !is_std_array::value); EXPECT_EQ (true, !std::is_array::value); EXPECT_EQ (true, has_size_and_data::value); } // Test construction TEST(Tdeque, contruct) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; deque q3{1, 2, 3, 4, 5}; EXPECT_EQ (8UL, q1.capacity()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (8UL, q2.capacity()); EXPECT_EQ (8UL, q2.size()); EXPECT_EQ (8UL, q3.capacity()); EXPECT_EQ (5UL, q3.size()); } // simple push-pop functionality TEST(Tdeque, push_pop) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; q1.push_front(1); q1.push_front(2); EXPECT_EQ (1, q1.pop_back()); EXPECT_EQ (2, q1.pop_back()); q1.push_back(1); q1.push_back(2); EXPECT_EQ (1, q1.pop_front()); EXPECT_EQ (2, q1.pop_front()); q1.push_front(2); q1.push_back(3); q1.push_front(1); q1.push_back(4); for (int i=1 ; i<= 4 ; ++i) EXPECT_EQ ((int)i, q1.pop_front()); } // front-back TEST(Tdeque, front_back) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; q1.push_front(2); q1.push_front(1); q1.push_back(3); q1.push_back(4); EXPECT_EQ (1, q1.front()); EXPECT_EQ (4, q1.back()); EXPECT_EQ (1, q2.front()); EXPECT_EQ (8, q2.back()); } // capacity TEST(Tdeque, capacity) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; q1.push_back(1); q1.clear(); EXPECT_EQ (true, q1.empty()); EXPECT_EQ (true, q2.full()); EXPECT_EQ (8UL, q1.capacity()); EXPECT_EQ (8UL, q2.capacity()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (8UL, q2.size()); q1.push_back(2); EXPECT_EQ (1UL, q1.size()); q1.push_front(1); EXPECT_EQ (2UL, q1.size()); q1.pop_back(); EXPECT_EQ (1UL, q1.size()); q1.pop_front(); EXPECT_EQ (0UL, q1.size()); } // push-pop limits TEST (Tdeque, push_pop_limits) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; EXPECT_EQ (int{}, q1.pop_back()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (true, q1.empty()); EXPECT_EQ (false, q1.full()); EXPECT_EQ (int{}, q1.pop_front()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (true, q1.empty()); EXPECT_EQ (false, q1.full()); q2.push_front(0); EXPECT_EQ (1, q2.front()); EXPECT_EQ (8, q2.back()); EXPECT_EQ (8UL, q2.size()); EXPECT_EQ (false, q2.empty()); EXPECT_EQ (true, q2.full()); q2.push_back(9); EXPECT_EQ (1, q2.front()); EXPECT_EQ (8, q2.back()); EXPECT_EQ (8UL, q2.size()); EXPECT_EQ (false, q2.empty()); EXPECT_EQ (true, q2.full()); } // iterators TEST (Tdeque, iterators) { deque q1{1, 2, 3, 4, 5, 6, 7, 8}; int check_it=1; EXPECT_EQ (q1.begin().base(), q1.end().base()); EXPECT_NE (q1.begin().iter(), q1.end().iter()); EXPECT_EQ (1, *q1.begin()); EXPECT_EQ (true, (q1.begin() == ++q1.end())); // loop edge iterators for (auto it = q1.begin() ; it != q1.end() ; ++it) EXPECT_EQ(*it, check_it++); EXPECT_EQ(9, check_it); // run through all EXPECT_EQ (1, q1.front()); // queue stays intact EXPECT_EQ (8, q1.back()); EXPECT_EQ (8UL, q1.size()); EXPECT_EQ (false, q1.empty()); EXPECT_EQ (true, q1.full()); q1.pop_front(); q1.pop_back(); check_it=2; for (auto& it : q1) EXPECT_EQ(it, check_it++); EXPECT_EQ(8, check_it); // run through all EXPECT_EQ (2, q1.front()); // queue stays intact EXPECT_EQ (7, q1.back()); EXPECT_EQ (6UL, q1.size()); EXPECT_EQ (false, q1.empty()); EXPECT_EQ (false, q1.full()); deque q2; q2.push_front(2); q2.push_front(1); q2.push_back(3); q2.push_back(4); q2.push_back(5); check_it =1; for (auto& it : q2) EXPECT_EQ(it, check_it++); EXPECT_EQ(6, check_it); // run through all } TEST (Tdeque, range) { deque q1{1, 2, 3, 4, 5, 6, 7, 8}; int check_it=1; for (auto& it : q1.contents()) EXPECT_EQ(it, check_it++); EXPECT_EQ(9, check_it); // run through all } // Concept TEST(Tdeque, concept_atomic) { using deque_t = deque; // EXPECT_EQ (true, !is_span::value); EXPECT_EQ (true, !is_std_array::value); EXPECT_EQ (true, !std::is_array::value); EXPECT_EQ (true, has_size_and_data::value); } // Test construction TEST(Tdeque, contruct_atomic) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; deque q3{1, 2, 3, 4, 5}; EXPECT_EQ (8UL, q1.capacity()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (8UL, q2.capacity()); EXPECT_EQ (8UL, q2.size()); EXPECT_EQ (8UL, q3.capacity()); EXPECT_EQ (5UL, q3.size()); } // simple push-pop functionality TEST(Tdeque, push_pop_atomic) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; q1.push_front(1); q1.push_front(2); EXPECT_EQ (1, q1.pop_back()); EXPECT_EQ (2, q1.pop_back()); q1.push_back(1); q1.push_back(2); EXPECT_EQ (1, q1.pop_front()); EXPECT_EQ (2, q1.pop_front()); q1.push_front(2); q1.push_back(3); q1.push_front(1); q1.push_back(4); for (int i=1 ; i<= 4 ; ++i) EXPECT_EQ ((int)i, q1.pop_front()); } // front-back TEST(Tdeque, front_back_atomic) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; q1.push_front(2); q1.push_front(1); q1.push_back(3); q1.push_back(4); EXPECT_EQ (1, q1.front()); EXPECT_EQ (4, q1.back()); EXPECT_EQ (1, q2.front()); EXPECT_EQ (8, q2.back()); } // capacity TEST(Tdeque, capacity_atomic) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; q1.push_back(1); q1.clear(); EXPECT_EQ (true, q1.empty()); EXPECT_EQ (true, q2.full()); EXPECT_EQ (8UL, q1.capacity()); EXPECT_EQ (8UL, q2.capacity()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (8UL, q2.size()); q1.push_back(2); EXPECT_EQ (1UL, q1.size()); q1.push_front(1); EXPECT_EQ (2UL, q1.size()); q1.pop_back(); EXPECT_EQ (1UL, q1.size()); q1.pop_front(); EXPECT_EQ (0UL, q1.size()); } // push-pop limits TEST (Tdeque, push_pop_limits_atomic) { deque q1; deque q2{1, 2, 3, 4, 5, 6, 7, 8}; EXPECT_EQ (int{}, q1.pop_back()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (true, q1.empty()); EXPECT_EQ (false, q1.full()); EXPECT_EQ (int{}, q1.pop_front()); EXPECT_EQ (0UL, q1.size()); EXPECT_EQ (true, q1.empty()); EXPECT_EQ (false, q1.full()); q2.push_front(0); EXPECT_EQ (1, q2.front()); EXPECT_EQ (8, q2.back()); EXPECT_EQ (8UL, q2.size()); EXPECT_EQ (false, q2.empty()); EXPECT_EQ (true, q2.full()); q2.push_back(9); EXPECT_EQ (1, q2.front()); EXPECT_EQ (8, q2.back()); EXPECT_EQ (8UL, q2.size()); EXPECT_EQ (false, q2.empty()); EXPECT_EQ (true, q2.full()); } // iterators TEST (Tdeque, iterators_atomic) { deque q1{1, 2, 3, 4, 5, 6, 7, 8}; int check_it=1; EXPECT_EQ (q1.begin().base(), q1.end().base()); EXPECT_NE (q1.begin().iter(), q1.end().iter()); EXPECT_EQ (1, *q1.begin()); EXPECT_EQ (true, (q1.begin() == ++q1.end())); // loop edge iterators for (auto it = q1.begin() ; it != q1.end() ; ++it) EXPECT_EQ(*it, check_it++); EXPECT_EQ(9, check_it); // run through all EXPECT_EQ (1, q1.front()); // queue stays intact EXPECT_EQ (8, q1.back()); EXPECT_EQ (8UL, q1.size()); EXPECT_EQ (false, q1.empty()); EXPECT_EQ (true, q1.full()); q1.pop_front(); q1.pop_back(); check_it=2; for (auto& it : q1) EXPECT_EQ(it, check_it++); EXPECT_EQ(8, check_it); // run through all EXPECT_EQ (2, q1.front()); // queue stays intact EXPECT_EQ (7, q1.back()); EXPECT_EQ (6UL, q1.size()); EXPECT_EQ (false, q1.empty()); EXPECT_EQ (false, q1.full()); deque q2; q2.push_front(2); q2.push_front(1); q2.push_back(3); q2.push_back(4); q2.push_back(5); check_it =1; for (auto& it : q2) EXPECT_EQ(it, check_it++); EXPECT_EQ(6, check_it); // run through all } TEST (Tdeque, range_atomic) { deque q1{1, 2, 3, 4, 5, 6, 7, 8}; int check_it=1; for (auto& it : q1.contents()) EXPECT_EQ(it, check_it++); EXPECT_EQ(9, check_it); // run through all } TEST(Tdeque, race) { constexpr size_t N = 1000000; deque q; int result[N]; auto push_front = [&](){ for (size_t i=1 ; i<=N ; ++i) q.push_front(i); }; auto push_back = [&](){ for (size_t i=1 ; i<=N ; ++i) q.push_back(i); }; auto pop_front = [&](){ for (size_t i=0 ; i