/*! * \file container/deque.h * \brief * A statically allocated deque based on a ring buffer. * * \copyright Copyright (C) 2021 Christos Choutouridis * *
License
* The MIT License (MIT) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. *
*/ #ifndef utl_container_deque_h__ #define utl_container_deque_h__ #include #include #include #include #include namespace utl { /*! * \class deque * \brief * A statically allocated deque based on a ring buffer * * The deque uses two ring_iterators one for the front and one for the rear. The iterators * are pointing to the next available spot, not on the last inserted spot. This way at the * initialization the iterators wont "pretend" to point to a valid item . * * We use a ring buffer of size \c N+1. We start the front iterator at the last location of the buffer * and the rear on the first. This way when the queue is full the iterators are pointing to the same location. * * \tparam Data_t The char-like queued item type. Usually \c char * \tparam N The size of deque * \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic. * \note * SemiAtomic means it is safe to access different ends from different threads. For example one thread can * push only from front and another can pop from back to implement a queue. */ template class deque { public: // meta-identity type using type = deque; using buffer_t = std::array; // We need N+1 spaces ring buffer for N spaces deque using iterator_t = ring_iterator; using range_t = range; // STL using value_type = Data_t; using reference = Data_t&; using const_reference = const Data_t&; using pointer = Data_t*; using const_pointer = const Data_t*; using iterator = iterator_t; using const_iterator = const iterator_t; using reverse_iterator = std::reverse_iterator; using const_reverse_iterator = std::reverse_iterator; //! \name Constructor / Destructor //! @{ public: //! Default constructor constexpr deque () noexcept : data_{}, f{data_.data(), N}, r{data_.data()} { if constexpr (SemiAtomic) std::atomic_thread_fence(std::memory_order_release); } //! fill contructor constexpr deque(const Data_t& value) noexcept { data_.fill(value); f = iterator(data_.data(), N); r = iterator(data_.data(), N); if constexpr (SemiAtomic) std::atomic_thread_fence(std::memory_order_release); } //! Initializer list contructor template constexpr deque(It&& ...it) noexcept : data_{{std::forward(it)...}}, f(data_.data(), N), r(data_.data(), sizeof...(It)) { if constexpr (SemiAtomic) std::atomic_thread_fence(std::memory_order_release); } deque(const deque&) = delete; //!< No copies deque& operator= (const deque&) = delete; //!< No copy assignments ~deque () = default; //!< default destructor //! @} //! \name Iterators //! @{ public: constexpr iterator begin() noexcept { iterator ret = f; return ++ret; } constexpr const_iterator begin() const noexcept { iterator ret = f; return ++ret; } constexpr const_iterator cbegin() const noexcept { iterator ret = f; return ++ret; } constexpr iterator end() noexcept { return r; } constexpr const_iterator end() const noexcept { return r; } constexpr const_iterator cend() const noexcept { return r; } constexpr reverse_iterator rbegin() noexcept { return r; } constexpr const_reverse_iterator rbegin() const noexcept { return r; } constexpr const_reverse_iterator crbegin() const noexcept { return r; } constexpr reverse_iterator rend() noexcept { reverse_iterator ret = f; return ++ret; } constexpr const_reverse_iterator rend() const noexcept { reverse_iterator ret = f; return ++ret; } constexpr const_reverse_iterator crend() const noexcept { reverse_iterator ret = f; return ++ret; } //! @} //! \name Capacity //! @{ public: //! \return The size of the deque. The items currently in queue. constexpr size_t size() noexcept { return r - (f +1); } constexpr size_t size() const noexcept { return r - (f +1); } //! \return The maximum size of the deque. The items the queue can hold. constexpr size_t max_size() noexcept { return N; } //! \return The capacity of the deque. The items the queue can hold. constexpr size_t capacity() noexcept { return N; } //! \return True if the deque is empty constexpr bool empty() noexcept { return size() == 0 ? true : false; } //! \return True if the deque is full constexpr bool full() noexcept { return size() == N ? true : false; } //! @} //! \name Member access //! @{ public: //! \brief Clears-empty the deque and return it to init state, without //! really deleting the contents. constexpr void clear() noexcept { f = iterator_t(data_.data(), N); r = iterator_t(data_.data()); if constexpr (SemiAtomic) std::atomic_thread_fence(std::memory_order_release); } //! \brief Push an item in the front of the deque //! \param it The item to push constexpr void push_front (const Data_t& it) noexcept { if (full()) return; *f = it; --f; // keep this separate for thread safety } //! \brief Push an item in the back of the deque //! \param it The item to push constexpr void push_back (const Data_t& it) noexcept { if (full()) return; *r = it; ++r; // keep this separate for thread safety } //! \brief Extract an item from the front of the deque and remove it from the deque //! \param it The item to push constexpr Data_t pop_front () noexcept { if (empty()) return Data_t{}; return *++f; } //! \brief Extract an item from the back of the deque and remove it from the deque //! \param it The item to push constexpr Data_t pop_back () noexcept { if (empty()) return Data_t{}; return *--r; } //! \brief Get a reference to the item in the front of the deque without extracting it. //! \return Reference to the item constexpr Data_t& front() noexcept { iterator_t it = f; return *++it; } constexpr const Data_t& front() const noexcept { iterator_t it = f; return *++it; } //! \brief Get a reference to the item in the front of the deque without extracting it. //! \return Reference to the item constexpr Data_t& back() noexcept { iterator_t it = r; return *--it; } constexpr const Data_t& back() const noexcept { iterator_t it = r; return *--it; } //! \brief Get a pointer to the begin of the items on the deque //! \return constexpr Data_t* data() noexcept { return &front(); } constexpr const Data_t* data() const noexcept { return &front(); } //! \brief Get a range for the data in queue //! \return A begin-end iterator pair struct constexpr range_t contents () noexcept { iterator_t b = f; return {++b, r}; } constexpr const range_t contents () const noexcept { iterator_t b = f; return {++b, r}; } //! @} private: buffer_t data_{}; //!< The statically allocated buffer iterator_t f{data_.data(), N}; //!< A ring iterator for the front (points to the next available location) iterator_t r{data_.data()}; //!< A ring iterator for the rear (points to the next available location). }; } // namespace utl #endif /* utl_container_deque_h__ */