Kaynağa Gözat

meta: Compilation correction for previous 3 commits

doc
Christos Houtouridis 5 yıl önce
ebeveyn
işleme
5f6eef3478
7 değiştirilmiş dosya ile 1605 ekleme ve 0 silme
  1. +34
    -0
      include/utl/concepts/concepts.h
  2. +69
    -0
      include/utl/concepts/defines.h
  3. +70
    -0
      include/utl/concepts/iterators.h
  4. +751
    -0
      include/utl/concepts/stl.h
  5. +187
    -0
      include/utl/utility/invoke.h
  6. +422
    -0
      test/tests/TConcepts.cpp
  7. +72
    -0
      test/tests/Tinvoke.cpp

+ 34
- 0
include/utl/concepts/concepts.h Dosyayı Görüntüle

@@ -0,0 +1,34 @@
/*!
* \file /utl/concepts/concepts.h
* \brief Concepts main include header
*
* Copyright (C) 2018-2019 Christos Choutouridis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __utl_concepts_concepts_h__
#define __utl_consepts_concepts_h__
#include <utl/core/impl.h>
#include <utl/concepts/defines.h>
#include <utl/concepts/stl.h>
#include <utl/concepts/iterators.h>
/*!
* \defgroup concepts
*/
#endif /* __utl_concepts_concepts_h__ */

+ 69
- 0
include/utl/concepts/defines.h Dosyayı Görüntüle

@@ -0,0 +1,69 @@
/*!
* \file /utl/concepts/defines.h
* \brief Concepts defines
*
* Copyright (C) 2018-2019 Christos Choutouridis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __utl_concepts_defines_h__
#define __utl_concepts_defines_h__
//!\defgroup concepts
//!@{
/*!
* \brief
* utl typename constraints wrapper
*
* \example
* \code
* template <utlConstrainType(SomeConcept) T> struct lala { };
* // will expand to something like:
* // template <SomeConcept T> struct lala { };
* // or
* // template <typename T> struct lala { };
* \endcode
*/
#if CXX_CONCEPTS
#define utlConstrainType(_Concept_) _Concept_
#else
#define utlConstrainType(_Concept_) typename
#endif
/*! \brief
* utl concept keyword syntax wrapper
*/
#if CXX_CONCEPTS
#if __cpp_concepts <= 201507L
#define _utlConcept concept bool
#else
#define _utlConcept concept
#endif
#else
#define _utlConcept constexpr bool
#endif
#ifndef CXX_LIB_INVOKE
#ifdef __cpp_lib_invoke
#define CXX_LIB_INVOKE __cpp_lib_invoke
#else
#define CXX_LIB_INVOKE 0
#endif
#endif
//! @}
#endif /* __utl_concepts_defines_h__ */

+ 70
- 0
include/utl/concepts/iterators.h Dosyayı Görüntüle

@@ -0,0 +1,70 @@
/*!
* \file /utl/impl/concepts/iterators.h
* \brief utl iterator concept support header
*
* Copyright (C) 2018 Christos Choutouridis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __utl_concepts_iterator_h__
#define __utl_concepts_iterator_h__
#include <utl/core/impl.h>
#include <utl/concepts/defines.h>
#include <utl/concepts/stl.h>
/*!
* \ingroup concepts
* \defgroup iterators
*/
//! @{
namespace utl {
#if CXX_CONCEPTS
template <class I>
_utlConcept WeaklyIncrementable =
Semiregular<I> &&
requires(I i) {
{ ++i } -> Same<I>&; // not required to be equality preserving
i++; // not required to be equality preserving
};
#else
namespace detail {
template <typename I> using try_ppI = decltype (++(std::declval<I>()));
template <typename I> using try_Ipp = decltype (std::declval<I>()++);
}
template <class I>
_utlConcept WeaklyIncrementable =
Semiregular<I>
&& Same<_ref_t<I>, meta::detected_t<detail::try_ppI, _ref_t<I>>>
&& meta::is_detected<detail::try_Ipp, _ref_t<I>>::value;
#endif
#if CXX_CONCEPTS
template <class I>
_utlConcept DeviceIterator =
requires(I i) {
{ *i } -> auto&&; // Requires: i is dereferenceable
} &&
WeaklyIncrementable<I>;
#else
#endif
}
//! @}
#endif /* __utl_concepts_iterator_h__ */

+ 751
- 0
include/utl/concepts/stl.h Dosyayı Görüntüle

@@ -0,0 +1,751 @@
/*!
* \file /utl/concepts/stl.h
* \brief STL's Concepts
*
* Copyright (C) 2018 - 2019 Christos Choutouridis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __utl_concepts_stl_h__
#define __utl_concepts_stl_h__
#include <utl/core/impl.h>
#include <utl/meta/meta.h>
#include <utl/utility/invoke.h>
#include <utl/concepts/defines.h>
/*!
* \brief
* STL's core language concepts
*
* We provide std concepts in case host's stl does not provide them yet.
*
* For more information \see https://en.cppreference.com/w/cpp/concepts
*/
//! @{
namespace utl {
template <typename T>
using remove_cvref_t = std::remove_cv_t< std::remove_reference_t<T> >;
template <typename T>
using cref_ = const std::remove_reference_t<T>&;
template <typename T>
using _ref_t = std::add_lvalue_reference_t<T>;
/*!
* Same
*/
template <class T, class U>
_utlConcept Same = meta::same_<T, U>::value;
// template<class T>
// _utlConcept Decayed = Same<T, std::decay_t<T>>;
/*!
* DerivedFrom
*/
template <class Derived, class Base>
_utlConcept DerivedFrom =
std::is_base_of<Base, Derived>::value &&
std::is_convertible<const volatile Derived*, const volatile Base*>::value;
/*!
* ConvertibleTo
*/
template <class From, class To>
#if CXX_CONCEPTS
_utlConcept ConvertibleTo =
std::is_convertible<From, To>::value &&
requires(From (&f)()) {
static_cast<To>(f());
};
#else
_utlConcept ConvertibleTo = std::is_convertible<From, To>::value;
#endif
/*!
* Common Reference
*/
//! @{
namespace common_impl {
//! \see https://ericniebler.github.io/std/wg21/D0022.html
// ========== common reference ===========
template<class T, class U>
using __cond_res =
decltype(false ? std::declval<T(&)()>()() : std::declval<U(&)()>()());
template<class From>
struct __copy_cv_ {
static_assert(!std::is_reference<From>::value);
template<class To> using apply = To;
};
template<class From>
struct __copy_cv_<const From> {
template<class To> using apply = const To;
};
template<class From>
struct __copy_cv_<volatile From> {
template<class To> using apply = volatile To;
};
template<class From>
struct __copy_cv_<const volatile From> {
template<class To> using apply = const volatile To;
};
template<class From, class To>
using __copy_cv = meta::invoke<__copy_cv_<From>, To>;
// CREF [meta.trans.other]/2.1
template<class T>
using __cref = std::add_lvalue_reference_t<const std::remove_reference_t<T>>;
// COMMON_REF [meta.trans.other]/2
template<class T, class U, class = void>
struct __common_ref_ {
static_assert(std::is_reference<T>::value, "");
static_assert(std::is_reference<U>::value, "");
};
template<class T, class U>
using __common_ref = meta::eval<__common_ref_<T, U>>;
// [meta.trans.other]/2.5
template<class T, class U>
using __lref_res = __cond_res<
__copy_cv<T, U> &,
__copy_cv<U, T> &
>;
// [meta.trans.other]/2.6
template<class T, class U, class R = __common_ref<T&, U&>>
using __rref_res = std::remove_reference_t<R>&&;
template<class T, class U>
struct __common_ref_<T&, U&,
meta::void_t<__lref_res<T, U>,
meta::when<std::is_reference<__lref_res<T, U>>::value>> > {
using type = __lref_res<T, U>;
};
template<class T, class U>
struct __common_ref_<T&&, U&&,
meta::void_t<__common_ref<T&, U&>,
meta::when<ConvertibleTo<T&&, __rref_res<T, U>>>,
meta::when<ConvertibleTo<U&&, __rref_res<T, U>>>> > {
using type = __rref_res<T, U>;
};
// [meta.trans.other]/2.7
template<class T, class U>
struct __common_ref_<T&&, U&,
meta::void_t<__common_ref<const T&, U&>,
meta::when<ConvertibleTo<T&&, __common_ref<const T&, U&>>>> > {
using type = __common_ref<const T&, U&>;
};
// [meta.trans.other]/2.8
template<class T, class U>
struct __common_ref_<T&, U&&,
meta::void_t<__common_ref<T&, const U&>,
meta::when<ConvertibleTo<U&&, __common_ref<T&, const U&>>>> > {
using type = __common_ref<T&, const U&>;
};
template<class>
struct __xref {
template<class U> using apply = U;
};
template<class T>
struct __xref<const T> {
template<class U> using apply = const U;
};
template<class T>
struct __xref<volatile T> {
template<class U> using apply = volatile U;
};
template<class T>
struct __xref<const volatile T> {
template<class U> using apply = const volatile U;
};
template<class T>
struct __xref<T&> {
template<class U> using apply =
std::add_lvalue_reference_t<meta::invoke<__xref<T>, U>>;
};
template<class T>
struct __xref<T&&> {
template<class U> using apply =
std::add_rvalue_reference_t<meta::invoke<__xref<T>, U>>;
};
template<class,
class,
template<class> class,
template<class> class
>
struct basic_common_reference { };
template<class T, class U>
using __basic_common_reference_t = meta::eval<
basic_common_reference<
remove_cvref_t<T>,
remove_cvref_t<U>,
__xref<T>::template apply,
__xref<U>::template apply
>
>;
template<class...>
struct common_reference {};
template<class... Ts>
using common_reference_t = meta::eval<
common_reference<Ts...>
>;
// [meta.trans.other]/5.2
template<class T>
struct common_reference<T> {
using type = T;
};
// [meta.trans.other]/5.3.4
template<class T, class U, class...>
struct __common_reference3
: std::common_type<T, U> {};
// [meta.trans.other]/5.3.3
template<class T, class U>
struct __common_reference3<T, U,
meta::void_t<__cond_res<T, U>>> {
using type = __cond_res<T, U>;
};
template<class T, class U, class...>
struct __common_reference2
: __common_reference3<T, U> {};
// [meta.trans.other]/5.3.2
template<class T, class U>
struct __common_reference2<T, U,
meta::void_t<__basic_common_reference_t<T, U>>> {
using type = __basic_common_reference_t<T, U>;
};
template <class T, class U, class...>
struct __common_reference
: __common_reference2<T, U> { };
template <class T, class U>
struct __common_reference<T, U,
meta::when<std::is_reference<T>::value && std::is_reference<U>::value>> {
using type = __common_ref<T, U>;
};
template<class T, class U>
struct common_reference<T, U> : __common_reference<T, U> { };
// [meta.trans.other]/5.4
template<class T, class U, class V, class... W>
//requires requires { typename common_reference_t<T, U>; }
struct common_reference<T, U, V, W...>
: common_reference <
common_reference_t<T, U>, V, W...
> {};
}
template<typename...Ts>
using common_reference = common_impl::common_reference<Ts...>;
template<typename... Ts>
using common_reference_t = meta::eval<
common_reference<Ts...>
>;
//! @}
//FIXME: CommonReference needs better implementation
template <class T, class U>
_utlConcept CommonReference =
Same<common_reference_t<T, U>, common_reference_t<U, T>> &&
ConvertibleTo<T, common_reference_t<T, U>> &&
ConvertibleTo<U, common_reference_t<T, U>>;
// != std::Common on CommonReference
template <class T, class U>
_utlConcept Common =
#if CXX_CONCEPTS
Same<std::common_type_t<T, U>, std::common_type_t<U, T>> &&
requires {
static_cast<std::common_type_t<T, U>>(std::declval<T>());
static_cast<std::common_type_t<T, U>>(std::declval<U>());
};
// } &&
// CommonReference<
// std::add_lvalue_reference_t<const T>,
// std::add_lvalue_reference_t<const U>> &&
// CommonReference<
// std::add_lvalue_reference_t<std::common_type_t<T, U>>,
// std::common_reference_t<
// std::add_lvalue_reference_t<const T>,
// std::add_lvalue_reference_t<const U>
// >
// >;
#else
// meta::and_ <
Same<std::common_type_t<T, U>, std::common_type_t<U, T>>; //>
// meta::bool_<CommonReference<
// std::add_lvalue_reference_t<const T>,
// std::add_lvalue_reference_t<const U>
// >>,
// meta::bool_< CommonReference<
// std::add_lvalue_reference_t<std::common_type_t<T, U>>,
// common_reference_t<
// std::add_lvalue_reference_t<const T>,
// std::add_lvalue_reference_t<const U>
// >
// >>
// >::value;
#endif
/*!
* Integral
*/
template <class T>
_utlConcept Integral = std::is_integral<T>::value;
/*!
* Signed Integral
*/
template <class T>
_utlConcept SignedIntegral = Integral<T> && std::is_signed<T>::value;
/*!
* Unsigned Integral
*/
template <class T>
_utlConcept UnsignedIntegral = Integral<T> && !std::is_signed<T>::value;
template <typename T>
_utlConcept MoveAssignable = std::is_move_assignable<T>::value;
template <typename T>
_utlConcept CopyAssignable = std::is_copy_assignable<T>::value;
/*!
* Assignable
* \note != std:: on CommonReference
*/
template<class LHS, class RHS>
_utlConcept Assignable =
#if CXX_CONCEPTS
std::is_lvalue_reference<LHS>::value &&
// CommonReference<
// const std::remove_reference_t<L>&,
// const std::remove_reference_t<R>&> &&
requires(LHS lhs, RHS&& rhs) {
lhs = std::forward<RHS>(rhs);
requires Same<
decltype(lhs = std::forward<RHS>(rhs)), LHS
>;
};
#else
std::is_assignable<LHS, RHS>::value;
#endif
/*!
* Swappable, SwappableWith
*/
//! @{
#if CXX_VER < CXX_VER_STD_17
namespace swappable_with_impl {
struct is_swappable_with_ {
// can apply std::swap
template<typename _Tp,
typename _Up,
typename
= decltype(std::swap(std::declval<_Tp&>(), std::declval<_Up&>())),
typename
= decltype(std::swap(std::declval<_Up&>(), std::declval<_Tp&>()))>
static meta::true_ check(int);
// can not apply std::swap
template<typename, typename> static meta::false_ check(...);
};
}
template <typename _Tp, typename _Up>
struct is_swappable_with
: swappable_with_impl::is_swappable_with_ {
using type = decltype(check<_Tp, _Up>(0));
};
#else
using is_swappable = std::is_swappable;
using is_swappable_with = std::is_swappable_with;
#endif
// != std:: on CommonReference
template<class T, class U>
_utlConcept SwappableWith =
is_swappable_with<T, T>::type::value &&
is_swappable_with<U, U>::type::value &&
is_swappable_with<T, U>::type::value &&
is_swappable_with<U, T>::type::value;
// std::CommonReference<
// const std::remove_reference_t<T>&,
// const std::remove_reference_t<U>&
// >;
// != std:: we use is_swappable_with now is_swappable
template<class T>
_utlConcept Swappable = is_swappable_with<T, T>::type::value;
//! @}
/*!
* Destructible
*/
template <class T>
_utlConcept Destructible = std::is_nothrow_destructible<T>::value;
/*!
* Constructible
*/
template <class T, class... Args>
_utlConcept Constructible =
Destructible<T> && std::is_constructible<T, Args...>::value;
/*!
* DefaultConstructible
*/
template <class T>
_utlConcept DefaultConstructible = Constructible<T>;
/*!
* MoveConstructible
* \note
* Another approach would be std::is_move_constructible<T>::value;
*/
template<class T>
_utlConcept MoveConstructible =
Constructible<T, T> && ConvertibleTo<T, T>;
/*!
* CopyConstructible
*/
template <class T>
_utlConcept CopyConstructible =
MoveConstructible<T> &&
Constructible<T, _ref_t<T>> && ConvertibleTo<_ref_t<T>, T> &&
Constructible<T, const _ref_t<T>> && ConvertibleTo<const _ref_t<T>, T> &&
Constructible<T, const T> && ConvertibleTo<const T, T>;
/*!
* Movable
*/
template <class T>
_utlConcept Movable =
std::is_object<T>::value &&
MoveConstructible<T> &&
Assignable<_ref_t<T>, T> &&
Swappable<T>;
/*!
* Copyable
*/
template <class T>
_utlConcept Copyable =
CopyConstructible<T> &&
Movable<T> &&
Assignable<_ref_t<T>, const _ref_t<T>>;
/*!
* Boolean
*/
#if CXX_CONCEPTS
template <class B>
_utlConcept Boolean =
Movable<remove_cvref_t<B>> &&
requires(const std::remove_reference_t<B>& b1,
const std::remove_reference_t<B>& b2, const bool a) {
requires ConvertibleTo<const std::remove_reference_t<B>&, bool>;
!b1; requires ConvertibleTo<decltype(!b1), bool>;
b1 && a; requires Same<decltype(b1 && a), bool>;
b1 || a; requires Same<decltype(b1 || a), bool>;
b1 && b2; requires Same<decltype(b1 && b2), bool>;
a && b2; requires Same<decltype(a && b2), bool>;
b1 || b2; requires Same<decltype(b1 || b2), bool>;
a || b2; requires Same<decltype(a || b2), bool>;
b1 == b2; requires ConvertibleTo<decltype(b1 == b2), bool>;
b1 == a; requires ConvertibleTo<decltype(b1 == a), bool>;
a == b2; requires ConvertibleTo<decltype(a == b2), bool>;
b1 != b2; requires ConvertibleTo<decltype(b1 != b2), bool>;
b1 != a; requires ConvertibleTo<decltype(b1 != a), bool>;
a != b2; requires ConvertibleTo<decltype(a != b2), bool>;
};
#else
namespace details {
template <typename B, typename = void>
struct is_boolean_ {
using type = meta::false_;
};
template <typename B>
struct is_boolean_ <B, meta::void_t<
meta::use_if_same_t<bool, decltype(!std::declval<cref_<B>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<B>>() == std::declval<cref_<B>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<B>>() != std::declval<cref_<B>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<B>>() && std::declval<cref_<B>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<B>>() || std::declval<cref_<B>>())>
>> {
using type = meta::true_;
};
template <typename B>
using is_boolean_t = meta::eval <
is_boolean_<B>
>;
}
template <class B>
_utlConcept Boolean =
Movable<remove_cvref_t<B>> &&
//ConvertibleTo<const std::remove_reference_t<B>&, bool> &&
ConvertibleTo<const _ref_t<B>, bool> &&
Same<meta::true_, details::is_boolean_t<B>>;
#endif
namespace details {
template <typename T, typename U, typename = void>
struct is_weakly_equality_comparable_with_ {
using type = meta::false_;
};
template <typename T, typename U>
struct is_weakly_equality_comparable_with_<T, U, meta::void_t<
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() == std::declval<cref_<U>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() != std::declval<cref_<U>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<U>>() == std::declval<cref_<T>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<U>>() != std::declval<cref_<T>>())>
>> {
using type = meta::true_;
};
template <typename T, typename U>
using is_weakly_equality_comparable_with_t = meta::eval<
is_weakly_equality_comparable_with_ <T, U>
>;
}
template <class T, class U>
_utlConcept WeaklyEqualityComparableWith =
#if CXX_CONCEPTS
requires(const std::remove_reference_t<T>& t,
const std::remove_reference_t<U>& u) {
t == u; requires Boolean<decltype(t == u)>;
t != u; requires Boolean<decltype(t != u)>;
u == t; requires Boolean<decltype(u == t)>;
u != t; requires Boolean<decltype(u != t)>;
};
#else
Same<meta::true_, details::is_weakly_equality_comparable_with_t<T, U>>;
#endif
template <class T>
_utlConcept EqualityComparable = WeaklyEqualityComparableWith<T, T>;
template <class T, class U>
_utlConcept EqualityComparableWith =
EqualityComparable<T> &&
EqualityComparable<U> &&
// CommonReference<
// const std::remove_reference_t<T>&,
// const std::remove_reference_t<U>&> &&
// EqualityComparable<
// common_reference_t<
// const std::remove_reference_t<T>&,
// const std::remove_reference_t<U>&>> &&
WeaklyEqualityComparableWith<T, U>;
#if CXX_CONCEPTS
template <class T>
_utlConcept StrictTotallyOrdered =
EqualityComparable<T> &&
requires(const std::remove_reference_t<T>& a,
const std::remove_reference_t<T>& b) {
a < b; requires Boolean<decltype(a < b)>;
a > b; requires Boolean<decltype(a > b)>;
a <= b; requires Boolean<decltype(a <= b)>;
a >= b; requires Boolean<decltype(a >= b)>;
};
#else
namespace details {
template <typename T, typename = void>
struct is_strict_totally_ordered_ {
using type = meta::false_;
};
template <typename T>
struct is_strict_totally_ordered_ <T, meta::void_t <
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() < std::declval<cref_<T>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() > std::declval<cref_<T>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() <= std::declval<cref_<T>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() >= std::declval<cref_<T>>())>
>> {
using type = meta::true_;
};
template <typename T>
using is_strict_totally_ordered_t = meta::eval <
is_strict_totally_ordered_<T>
>;
}
template <class T>
_utlConcept StrictTotallyOrdered =
EqualityComparable<T> &&
Same <meta::true_, details::is_strict_totally_ordered_t<T>>;
#endif
#if CXX_CONCEPTS
template <class T, class U>
_utlConcept StrictTotallyOrderedWith =
StrictTotallyOrdered<T> &&
StrictTotallyOrdered<U> &&
// CommonReference<
// const std::remove_reference_t<T>&,
// const std::remove_reference_t<U>&
// > &&
// StrictTotallyOrdered<
// common_reference_t<
// const std::remove_reference_t<T>&,
// const std::remove_reference_t<U>&
// >
// > &&
EqualityComparableWith<T, U> &&
requires(const std::remove_reference_t<T>& t,
const std::remove_reference_t<U>& u) {
t < u; requires Boolean<decltype(t < u)>;
t > u; requires Boolean<decltype(t > u)>;
t <= u; requires Boolean<decltype(t <= u)>;
t >= u; requires Boolean<decltype(t >= u)>;
u < t; requires Boolean<decltype(u < t)>;
u > t; requires Boolean<decltype(u > t)>;
u <= t; requires Boolean<decltype(u <= t)>;
u >= t; requires Boolean<decltype(u >= t)>;
};
#else
namespace details {
template <typename T, typename U, typename = void>
struct is_strict_totally_ordered_with_ {
using type = meta::false_;
};
template <typename T, typename U>
struct is_strict_totally_ordered_with_ <T, U, meta::void_t <
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() < std::declval<cref_<U>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() > std::declval<cref_<U>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() <= std::declval<cref_<U>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<T>>() >= std::declval<cref_<U>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<U>>() < std::declval<cref_<T>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<U>>() > std::declval<cref_<T>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<U>>() <= std::declval<cref_<T>>())>,
meta::use_if_same_t<bool, decltype(std::declval<cref_<U>>() >= std::declval<cref_<T>>())>
>> {
using type = meta::true_;
};
template <typename T, typename U>
using is_strict_totally_ordered_with_t = meta::eval <
is_strict_totally_ordered_with_<T, U>
>;
}
template <class T, class U>
_utlConcept StrictTotallyOrderedWith =
StrictTotallyOrdered<T> &&
StrictTotallyOrdered<U> &&
EqualityComparableWith<T, U> &&
Same <meta::true_, details::is_strict_totally_ordered_with_t<T, U>>;
#endif
/*!
* Semiregular
*/
template <class T>
_utlConcept Semiregular = Copyable<T> && DefaultConstructible<T>;
/*!
* Regular
*/
template <class T>
_utlConcept Regular = Semiregular<T> && EqualityComparable<T>;
/*!
* Scalar
*/
template<class T>
_utlConcept Scalar =
std::is_scalar<T>::value && Regular<T>;
/*!
* Arithmetic
*/
template<class T>
_utlConcept Arithmetic =
std::is_arithmetic<T>::value && Scalar<T> && StrictTotallyOrdered<T>;
/*!
* FloatingPoint
*/
template<class T>
_utlConcept FloatingPoint =
std::is_floating_point<T>::value && Arithmetic<T>;
/*!
* Invocable
*/
template <class F, class... Args>
_utlConcept Invocable = is_invocable<F, Args...>::value;
// requires(F&& f, Args&&... args) {
// invoke(std::forward<F>(f), std::forward<Args>(args)...);
// };
template< class F, class... Args >
_utlConcept RegularInvocable = Invocable<F, Args...>;
template < class F, class... Args >
_utlConcept Predicate =
RegularInvocable<F, Args...> &&
Boolean<invoke_result_t<F, Args...>>;
template <class R, class T, class U>
_utlConcept Relation =
Predicate<R, T, T> && Predicate<R, U, U> &&
Predicate<R, T, U> && Predicate<R, U, T>;
template < class R, class T, class U >
_utlConcept StrictWeakOrder = Relation<R, T, U>;
}
//! @}
#endif /* __utl_concepts_stl_h__ */

+ 187
- 0
include/utl/utility/invoke.h Dosyayı Görüntüle

@@ -0,0 +1,187 @@
/*!
* \file utl/utility/invoke.h
* \brief invoke() and invoke() traits implementation
*
* Copyright (C) 2018-2019 Christos Choutouridis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more detail.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __utl_utility_invoke_h__
#define __utl_utility_invoke_h__
#include <utl/core/impl.h>
#include <utl/meta/meta.h>
#include <type_traits>
#include <functional>
#include <utility>
/*!
* \ingroup utility
* \defgroup invoke
*
*/
//! @{
namespace utl {
namespace detail {
template <class T>
struct is_ref_wrapper : meta::false_ {};
template <class U>
struct is_ref_wrapper<std::reference_wrapper<U>> : meta::true_ {};
// 1
template <class T, class Type, class T1, class... Args,
meta::enable_if_t<
std::is_member_function_pointer<std::decay_t<Type T::*>>::value &&
std::is_base_of<T, std::decay_t<T1>>::value,
int> =0
>
decltype(auto) invoke_impl_(Type T::* f, T1&& t1, Args&&... args) {
return (std::forward<T1>(t1).*f)(std::forward<Args>(args)...);
}
// 2
template <class T, class Type, class T1, class... Args,
meta::enable_if_t<
std::is_member_function_pointer<std::decay_t<Type T::*>>::value &&
is_ref_wrapper<std::decay_t<T1>>::value,
int> =0
>
decltype(auto) invoke_impl_(Type T::* f, T1&& t1, Args&&... args) {
return (t1.get().*f)(std::forward<Args>(args)...);
}
// 3
template <class T, class Type, class T1, class... Args,
meta::enable_if_t<
std::is_member_function_pointer<std::decay_t<Type T::*>>::value &&
!std::is_base_of<T, std::decay_t<T1>>::value &&
!is_ref_wrapper<std::decay_t<T1>>::value,
int> =0
>
decltype(auto) invoke_impl_(Type T::* f, T1&& t1, Args&&... args) {
return ((*std::forward<T1>(t1)).*f)(std::forward<Args>(args)...);
}
// 4
template <class T, class Type, class T1, class... Args,
meta::enable_if_t<
std::is_member_object_pointer<std::decay_t<Type T::*>>::value &&
std::is_base_of<T, std::decay_t<T1>>::value,
int> =0
>
decltype(auto) invoke_impl_(Type T::* f, T1&& t1, Args&&... args) {
return std::forward<T1>(t1).*f;
}
// 5
template <class T, class Type, class T1, class... Args,
meta::enable_if_t<
std::is_member_object_pointer<std::decay_t<Type T::*>>::value &&
is_ref_wrapper<std::decay_t<T1>>::value,
int> =0
>
decltype(auto) invoke_impl_(Type T::* f, T1&& t1, Args&&... args) {
return t1.get().*f;
}
// 6
template <class T, class Type, class T1, class... Args,
meta::enable_if_t<
std::is_member_object_pointer<std::decay_t<Type T::*>>::value &&
!std::is_base_of<T, std::decay_t<T1>>::value &&
!is_ref_wrapper<std::decay_t<T1>>::value,
int> =0
>
decltype(auto) invoke_impl_(Type T::* f, T1&& t1, Args&&... args) {
return (*std::forward<T1>(t1)).*f;
}
template <class F, class... Args>
decltype(auto) invoke_impl_(F&& f, Args&&... args) {
return std::forward<F>(f)(std::forward<Args>(args)...);
}
} // namespace detail
//! Invoke a callable object (for C++14)
template<typename _Callable, typename... _Args>
inline decltype(auto) invoke(_Callable&& fn, _Args&&... args) {
return detail::invoke_impl_(
std::forward<_Callable>(fn), std::forward<_Args>(args)...
);
}
//! @}
//! std::is_invocable trait for C++11
template <typename F, typename... Args>
struct is_invocable :
std::is_constructible<
std::function<void(Args ...)>,
std::reference_wrapper<typename std::remove_reference<F>::type>
> { };
//! std::is_invocable_r trait for C++11
template <typename R, typename F, typename... Args>
struct is_invocable_r :
std::is_constructible<
std::function<R(Args ...)>,
std::reference_wrapper<typename std::remove_reference<F>::type>
> { };
/*!
* invoke_result (SFINAE friendly)
*/
//! @{
namespace detail {
template<typename _Callable, typename... _Args>
struct try_invoke {
using type = decltype (
detail::invoke_impl_(std::declval<_Callable&&>(), std::declval<_Args&&>()...)
);
};
template<bool B, typename _Callable, typename... _Args>
struct invoke_result_ {
using type = meta::nil_;
};
template <typename _Callable, typename... _Args>
struct invoke_result_ <true, _Callable, _Args...> {
using type = meta::invoke_t<
meta::quote<try_invoke>, _Callable, _Args...
>;
};
}
//! invoke_result (for C++14)
template <typename _Callable, typename... _Args>
using invoke_result = detail::invoke_result_<
is_invocable<_Callable, _Args...>::value,
_Callable,
_Args...
>;
//! invoke_result_t (for C++14)
template<typename _Callable, typename... _Args>
using invoke_result_t = meta::eval <
invoke_result<_Callable, _Args...>
>;
}
//! @}
#endif /* __utl_utility_invoke_h__ */

+ 422
- 0
test/tests/TConcepts.cpp Dosyayı Görüntüle

@@ -0,0 +1,422 @@
/*!
* \file Tmeta.cpp
*
* Copyright (C) 2018 Christos Choutouridis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <utl/concepts/concepts.h>
#include <utl/meta/meta.h>
#include <gtest/gtest.h>
namespace test_concepts {
using namespace utl;
/*
* Fixture like types
*/
struct Empty { };
struct HaveOnlyCopy {
HaveOnlyCopy(const HaveOnlyCopy&) = default;
HaveOnlyCopy(HaveOnlyCopy&&) = delete;
HaveOnlyCopy& operator= (const HaveOnlyCopy&) = default;
HaveOnlyCopy& operator= (HaveOnlyCopy&&) = delete;
};
struct HaveOnlyMove {
HaveOnlyMove(const HaveOnlyMove&) = delete;
HaveOnlyMove(HaveOnlyMove&&) = default;
HaveOnlyMove& operator= (const HaveOnlyMove&) = delete;
HaveOnlyMove& operator= (HaveOnlyMove&&) = default;
};
struct HaveCopyAndMove {
HaveCopyAndMove(const HaveCopyAndMove&) = default;
HaveCopyAndMove(HaveCopyAndMove&&) = default;
HaveCopyAndMove& operator= (const HaveCopyAndMove&) = default;
HaveCopyAndMove& operator= (HaveCopyAndMove&&) = default;
};
class HavePerfectForwarding {
public: template<class T> HavePerfectForwarding(T&&) { }
};
class Base { };
class Derived1 : public Base { };
class Derived2 : public Derived1 { };
class HaveOperatorBase {
public: operator Base() { return base; }
Base base;
};
struct A {
int a_;
public:
A(int a =0) : a_{a} { };
A(const A&) = default;
A(A&&) = default;
};
bool operator== (const A& l, const A& r) { return l.a_ == r.a_; }
bool operator!= (const A& l, const A& r) { return l.a_ != r.a_; }
struct B {
int b_;
public:
B(int b =0) : b_{b} { };
B(const B&) = default;
B(B&&) = default;
B& operator= (const B&) = default;
B& operator= (B&&) = default;
};
bool operator== (const B& l, const B& r) { return l.b_ == r.b_; }
bool operator!= (const B& l, const B& r) { return l.b_ != r.b_; }
bool operator< (const B& l, const B& r) { return l.b_ < r.b_; }
bool operator<= (const B& l, const B& r) { return l.b_ <= r.b_; }
bool operator> (const B& l, const B& r) { return l.b_ > r.b_; }
bool operator>= (const B& l, const B& r) { return l.b_ >= r.b_; }
TEST(TConcepts, Same) {
// Same
EXPECT_EQ (true, (Same<int, int>));
EXPECT_EQ (false, (Same<int, long>));
EXPECT_EQ (true, (Same<int*, int*>));
EXPECT_EQ (true, (Same<double&, double&>));
EXPECT_EQ (false, (Same<int, Empty>));
EXPECT_EQ (false, (Same<Base, Derived1>));
}
TEST(TConcepts, DerivedFrom) {
// DerivedFrom
EXPECT_EQ (true, (DerivedFrom<Derived1, Base>));
EXPECT_EQ (true, (DerivedFrom<Derived2, Derived1>));
EXPECT_EQ (true, (DerivedFrom<Derived2, Base>));
EXPECT_EQ (false, (DerivedFrom<Base, Derived1>));
EXPECT_EQ (false, (DerivedFrom<Base, int>));
EXPECT_EQ (false, (DerivedFrom<void, int>));
}
TEST(TConcepts, ConvertibleTo) {
// ConvertibleTo
EXPECT_EQ (true, (ConvertibleTo<void, void>));
EXPECT_EQ (false, (ConvertibleTo<Base, void>));
EXPECT_EQ (false, (ConvertibleTo<Base*, Derived1*>));
EXPECT_EQ (true, (ConvertibleTo<Derived1*, Base*>));
EXPECT_EQ (true, (ConvertibleTo<HaveOperatorBase, Base>));
EXPECT_EQ (true, (ConvertibleTo<Base, HavePerfectForwarding>));
}
TEST(TConcepts, CommonReference) {
// CommonReference
EXPECT_EQ (true, (CommonReference<Derived1, Base>));
EXPECT_EQ (true, (CommonReference<Derived1&, Base>));
EXPECT_EQ (true, (CommonReference<const Empty&&, const Empty&>));
EXPECT_EQ (false, (CommonReference<Empty&, const volatile Empty&>));
//FIXME: CommonReference needs SFINAE friendly implementation
//EXPECT_EQ (false, (CommonReference<Empty&&, const volatile Empty&>)); <- yields compiler error
// Common
EXPECT_EQ (true, (Common<int, int>));
EXPECT_EQ (true, (Common<Base, Derived1>));
EXPECT_EQ (true, (Common<Derived1, Derived2>));
EXPECT_EQ (true, (Common<Base, HaveOperatorBase>));
EXPECT_EQ (true, (Common<Base, HavePerfectForwarding>));
}
TEST(TConcepts, Integral) {
// Integral
EXPECT_EQ (false, (Integral<void>));
EXPECT_EQ (true, (Integral<int>));
EXPECT_EQ (true, (Integral<bool>));
EXPECT_EQ (false, (Integral<int*>));
EXPECT_EQ (false, (Integral<Base>));
EXPECT_EQ (true, (Integral<meta::int_<42>::value_type>));
EXPECT_EQ (false, (Integral<meta::int_<42>::type>));
// SignedIntegral
EXPECT_EQ (false, (SignedIntegral<void>));
EXPECT_EQ (true, (SignedIntegral<int>));
EXPECT_EQ (false, (SignedIntegral<int*>));
EXPECT_EQ (false, (SignedIntegral<unsigned long>));
EXPECT_EQ (false, (SignedIntegral<double>));
EXPECT_EQ (false, (SignedIntegral<Base>));
EXPECT_EQ (true, (SignedIntegral<meta::int16_<42>::value_type>));
// UnsignedIntegral
EXPECT_EQ (false, (UnsignedIntegral<void>));
EXPECT_EQ (true, (UnsignedIntegral<unsigned int>));
EXPECT_EQ (false, (UnsignedIntegral<long>));
EXPECT_EQ (false, (UnsignedIntegral<double>));
EXPECT_EQ (false, (UnsignedIntegral<Base>));
EXPECT_EQ (true, (UnsignedIntegral<meta::uint16_<42>::value_type>));
}
TEST(TConcepts, Assignable) {
// MoveAssignable
EXPECT_EQ (false, (MoveAssignable<void>));
EXPECT_EQ (true, (MoveAssignable<void*>));
EXPECT_EQ (true, (MoveAssignable<int>));
EXPECT_EQ (true, (MoveAssignable<int*>));
EXPECT_EQ (false, (MoveAssignable<HaveOnlyCopy>));
EXPECT_EQ (true, (MoveAssignable<HaveOnlyMove>));
EXPECT_EQ (true, (MoveAssignable<HaveCopyAndMove>));
EXPECT_EQ (true, (MoveAssignable<Empty>));
EXPECT_EQ (true, (MoveAssignable<HavePerfectForwarding>));
// CopyAssignable
EXPECT_EQ (false, (CopyAssignable<void>));
EXPECT_EQ (true, (CopyAssignable<void*>));
EXPECT_EQ (true, (CopyAssignable<int>));
EXPECT_EQ (true, (CopyAssignable<int*>));
EXPECT_EQ (true, (CopyAssignable<HaveOnlyCopy>));
EXPECT_EQ (false, (CopyAssignable<HaveOnlyMove>));
EXPECT_EQ (true, (CopyAssignable<HaveCopyAndMove>));
EXPECT_EQ (true, (CopyAssignable<Empty>));
EXPECT_EQ (true, (CopyAssignable<HavePerfectForwarding>));
// Assignable
EXPECT_EQ (false, (Assignable<void, void>));
EXPECT_EQ (false, (Assignable<int&, void>));
EXPECT_EQ (true, (Assignable<int&, int>));
EXPECT_EQ (false, (Assignable<int, int>));
EXPECT_EQ (false, (Assignable<int*, int*>));
EXPECT_EQ (true, (Assignable<Base&, Derived1>));
EXPECT_EQ (false, (Assignable<Derived1&, Base>));
EXPECT_EQ (true, (Assignable<HaveOnlyMove&, HaveOnlyMove&&>));
EXPECT_EQ (true , (Assignable<HaveOnlyMove&, HaveOnlyMove>));
EXPECT_EQ (true, (Assignable<Empty&, Empty>));
}
TEST(TConcepts, Swappable) {
// Swappable, SwappableWith
EXPECT_EQ (false, (Swappable<void>));
EXPECT_EQ (true, (Swappable<void*>));
EXPECT_EQ (true, (Swappable<int>));
EXPECT_EQ (true, (Swappable<Base>));
EXPECT_EQ (true, (SwappableWith<int, int>));
EXPECT_EQ (false, (SwappableWith<int, Base>));
EXPECT_EQ (false, (SwappableWith<Base, Derived1>));
// Destructible
EXPECT_EQ (false, (Destructible<void>));
EXPECT_EQ (true, (Destructible<void*>));
EXPECT_EQ (true, (Destructible<int>));
EXPECT_EQ (true, (Destructible<int&>));
EXPECT_EQ (true, (Destructible<Base>));
EXPECT_EQ (true, (Destructible<HavePerfectForwarding>));
}
TEST(TConcepts, Constructible) {
// Constructible
EXPECT_EQ (false, (Constructible<void>));
EXPECT_EQ (true, (Constructible<void*>));
EXPECT_EQ (true, (Constructible<Base>));
EXPECT_EQ (false, (Constructible<HaveOnlyMove>));
EXPECT_EQ (true, (Constructible<HavePerfectForwarding, int>));
// DefaultConstructible
EXPECT_EQ (false, (DefaultConstructible<void>));
EXPECT_EQ (true, (DefaultConstructible<void*>));
EXPECT_EQ (false, (DefaultConstructible<int&>));
EXPECT_EQ (true, (DefaultConstructible<Base>));
EXPECT_EQ (true, (DefaultConstructible<Derived1>));
EXPECT_EQ (false, (DefaultConstructible<HaveOnlyCopy>));
EXPECT_EQ (false, (DefaultConstructible<HaveOnlyMove>));
EXPECT_EQ (false, (DefaultConstructible<HavePerfectForwarding>));
// MoveConstructible
EXPECT_EQ (false, (MoveConstructible<void>));
EXPECT_EQ (true, (MoveConstructible<void*>));
EXPECT_EQ (true, (MoveConstructible<Base>));
EXPECT_EQ (true, (MoveConstructible<Derived1>));
EXPECT_EQ (true, (MoveConstructible<HaveOnlyMove>));
EXPECT_EQ (false, (MoveConstructible<HaveOnlyCopy>));
EXPECT_EQ (true, (MoveConstructible<HaveCopyAndMove>));
EXPECT_EQ (true , (MoveConstructible<HavePerfectForwarding>));
// CopyConstructible
EXPECT_EQ (false, (CopyConstructible<void>));
EXPECT_EQ (true, (CopyConstructible<void*>));
EXPECT_EQ (true, (CopyConstructible<Base>));
EXPECT_EQ (true, (CopyConstructible<Derived1>));
EXPECT_EQ (false, (CopyConstructible<HaveOnlyMove>));
EXPECT_EQ (false, (CopyConstructible<HaveOnlyCopy>));
EXPECT_EQ (true, (CopyConstructible<HaveCopyAndMove>));
EXPECT_EQ (true , (CopyConstructible<HavePerfectForwarding>));
}
TEST(TConcepts, MovableCopyable) {
// Movable
EXPECT_EQ (false, (Movable<void>));
EXPECT_EQ (true, (Movable<int>));
EXPECT_EQ (true, (Movable<Base>));
EXPECT_EQ (true, (Movable<Derived1>));
EXPECT_EQ (true, (Movable<HaveOnlyMove>));
EXPECT_EQ (false, (Movable<HaveOnlyCopy>));
EXPECT_EQ (true, (Movable<HaveCopyAndMove>));
EXPECT_EQ (true , (Movable<HavePerfectForwarding>));
// Copyable
EXPECT_EQ (false, (Copyable<void>));
EXPECT_EQ (true, (Copyable<int>));
EXPECT_EQ (true, (Copyable<Base>));
EXPECT_EQ (true, (Copyable<Derived1>));
EXPECT_EQ (false, (Copyable<HaveOnlyMove>));
EXPECT_EQ (false, (Copyable<HaveOnlyCopy>));
EXPECT_EQ (true, (Copyable<HaveCopyAndMove>));
EXPECT_EQ (true , (Copyable<HavePerfectForwarding>));
}
TEST(TConcepts, Boolean) {
// Boolean
EXPECT_EQ (false, (Boolean<void>));
EXPECT_EQ (true, (Boolean<bool>));
EXPECT_EQ (true, (Boolean<int>));
EXPECT_EQ (true, (Boolean<double>));
EXPECT_EQ (true, (Boolean<std::true_type>));
EXPECT_EQ (true, (Boolean<meta::true_>));
EXPECT_EQ (false, (Boolean<Empty>));
}
TEST(TConcepts, Comparable) {
// EqualityComparable
EXPECT_EQ (false, (EqualityComparable<void>));
EXPECT_EQ (true, (EqualityComparable<bool>));
EXPECT_EQ (true, (EqualityComparable<int>));
EXPECT_EQ (false, (EqualityComparable<Empty>));
EXPECT_EQ (true, (EqualityComparable<A>));
// EqualityComparableWith
EXPECT_EQ (false, (EqualityComparableWith<void, bool>));
EXPECT_EQ (false, (EqualityComparableWith<void, void>));
EXPECT_EQ (true, (EqualityComparableWith<bool, bool>));
EXPECT_EQ (true, (EqualityComparableWith<int, int>));
EXPECT_EQ (true, (EqualityComparableWith<int, bool>));
EXPECT_EQ (false, (EqualityComparableWith<Empty, Empty>));
EXPECT_EQ (false, (EqualityComparableWith<int, Empty>));
EXPECT_EQ (true, (EqualityComparableWith<A, A>));
EXPECT_EQ (false, (EqualityComparableWith<A, B>));
// StrictTotallyOrdered
EXPECT_EQ (false, (StrictTotallyOrdered<void>));
EXPECT_EQ (true, (StrictTotallyOrdered<bool>));
EXPECT_EQ (true, (StrictTotallyOrdered<int>));
EXPECT_EQ (true, (StrictTotallyOrdered<double>));
EXPECT_EQ (false, (StrictTotallyOrdered<Empty>));
EXPECT_EQ (false, (StrictTotallyOrdered<A>));
EXPECT_EQ (true, (StrictTotallyOrdered<B>));
// StrictTotallyOrderedWith
EXPECT_EQ (false, (StrictTotallyOrderedWith<void, void>));
EXPECT_EQ (false, (StrictTotallyOrderedWith<int, void>));
EXPECT_EQ (true, (StrictTotallyOrderedWith<bool, bool>));
EXPECT_EQ (true, (StrictTotallyOrderedWith<int, double>));
EXPECT_EQ (false, (StrictTotallyOrderedWith<int, Empty>));
EXPECT_EQ (false, (StrictTotallyOrderedWith<Base, Derived1>));
EXPECT_EQ (false, (StrictTotallyOrderedWith<A, A>));
EXPECT_EQ (true, (StrictTotallyOrderedWith<B, B>));
EXPECT_EQ (false, (StrictTotallyOrderedWith<A, B>));
}
TEST(TConcepts, Types) {
// Semiregular
EXPECT_EQ (false, (Semiregular<void>));
EXPECT_EQ (true, (Semiregular<int>));
EXPECT_EQ (true, (Semiregular<Empty>));
EXPECT_EQ (false, (Semiregular<HaveOnlyMove>));
EXPECT_EQ (false, (Semiregular<HaveOnlyCopy>));
EXPECT_EQ (false, (Semiregular<HaveCopyAndMove>));
EXPECT_EQ (false, (Semiregular<A>));
EXPECT_EQ (true, (Semiregular<B>));
// Regular
EXPECT_EQ (false, (Regular<void>));
EXPECT_EQ (true, (Regular<int>));
EXPECT_EQ (true, (Regular<int*>));
EXPECT_EQ (false, (Regular<Empty>));
EXPECT_EQ (false, (Regular<HaveOnlyMove>));
EXPECT_EQ (false, (Regular<HaveOnlyCopy>));
EXPECT_EQ (false, (Regular<HaveCopyAndMove>));
EXPECT_EQ (false, (Regular<A>));
EXPECT_EQ (true, (Regular<B>));
// Scalar
EXPECT_EQ (false, (Scalar<void>));
EXPECT_EQ (true, (Scalar<int>));
EXPECT_EQ (true, (Scalar<long*>));
EXPECT_EQ (false, (Scalar<A>));
EXPECT_EQ (false, (Scalar<B>));
// Arithmetic
EXPECT_EQ (false, (Arithmetic<void>));
EXPECT_EQ (true, (Arithmetic<int>));
EXPECT_EQ (false, (Arithmetic<long*>));
EXPECT_EQ (false, (Arithmetic<A>));
EXPECT_EQ (false, (Arithmetic<B>));
// FloatingPoint
EXPECT_EQ (false, (FloatingPoint<void>));
EXPECT_EQ (true, (FloatingPoint<float>));
EXPECT_EQ (true, (FloatingPoint<double>));
EXPECT_EQ (false, (FloatingPoint<int>));
EXPECT_EQ (false, (FloatingPoint<float*>));
EXPECT_EQ (false, (FloatingPoint<A>));
EXPECT_EQ (false, (FloatingPoint<B>));
}
struct Inv {
void operator() (int) { };
void operator() () { };
};
struct Pred {
bool operator () (int) { return true; }
bool operator () (int, int) { return true; }
};
TEST(TConcepts, Callable) {
EXPECT_EQ (true, (Invocable<Inv, int>));
EXPECT_EQ (true, (Invocable<Inv>));
EXPECT_EQ (true, (Invocable<Inv, double>));
EXPECT_EQ (false, (Invocable<Inv, Empty>));
EXPECT_EQ (true, (RegularInvocable<Inv, int>));
EXPECT_EQ (false, (Predicate<Inv, int>));
EXPECT_EQ (true, (Predicate<Pred, int>));
EXPECT_EQ (false, (Predicate<Pred, Empty>));
EXPECT_EQ (true, (Relation<Pred, int, int>));
EXPECT_EQ (true, (Relation<Pred, int, double>));
EXPECT_EQ (false, (Relation<Pred, Empty, int>));
EXPECT_EQ (true, (StrictWeakOrder<Pred, int, int>));
EXPECT_EQ (false, (StrictWeakOrder<Pred, int, Empty>));
}
struct Incr {
Incr& operator++() { return *this; }
Incr operator++(int) { return *this; }
};
int type_printer (int* i) { return *i; }
TEST(TConcepts, Iterators) {
// type_printer(detail::try_ppI<Incr&>{});
// type_printer(detail::try_Ipp<Incr&>{});
// type_printer(meta::detected_t<detail::try_ppI, int>{});
EXPECT_EQ (true, (WeaklyIncrementable<int>));
EXPECT_EQ (false, (WeaklyIncrementable<void>));
EXPECT_EQ (false, (WeaklyIncrementable<meta::nil_>));
EXPECT_EQ (true, (WeaklyIncrementable<Incr>));
EXPECT_EQ (false, (WeaklyIncrementable<Incr&>));
}
}

+ 72
- 0
test/tests/Tinvoke.cpp Dosyayı Görüntüle

@@ -0,0 +1,72 @@
/*!
* \file Tinvoke.cpp
*
* Copyright (C) 2018-2019 Christos Choutouridis
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <utl/utility/invoke.h>
#include <gtest/gtest.h>
#include <type_traits>
namespace test_meta {
using namespace utl;
/*
* Types to behave like Fixtures
*/
int Ifun(int i) { return i; }
struct Ifoo {
int operator() (int i) {
return i;
}
};
struct Ibar {
Ibar(int num) : num_(num) {}
int echo(int i) const { return i; }
int get() const { return num_; }
int num_;
};
/*
* Test invoke()
*/
TEST(Tinvoke, Invoke) {
Ifoo ifoo{};
const Ibar ibar{42};
EXPECT_EQ (42, invoke(Ifun, 42));
EXPECT_EQ (42, invoke([] () { return Ifun(42); }));
EXPECT_EQ (42, invoke(Ifoo{}, 42));
EXPECT_EQ (42, invoke(ifoo, 42));
EXPECT_EQ (42, invoke(&Ibar::echo, ibar, 42));
EXPECT_EQ (42, invoke(&Ibar::get, ibar));
EXPECT_EQ (true, (is_invocable<Ifoo, int>::value));
EXPECT_EQ (false, (is_invocable<Ifoo>::value));
EXPECT_EQ (false, (is_invocable<Ifoo, int, double>::value));
EXPECT_EQ (false, (is_invocable<Ibar, int>::value));
EXPECT_EQ (true, (is_invocable_r<int, Ifoo, int>::value));
EXPECT_EQ (false, (is_invocable_r<int*, Ifoo, int>::value));
EXPECT_EQ (false, (is_invocable_r<int, Ifoo>::value));
EXPECT_EQ (true, (std::is_same<int, invoke_result_t<Ifoo, int>>()));
EXPECT_EQ (true, (std::is_same<meta::nil_, invoke_result_t<Ifoo>>()));
EXPECT_EQ (true, (std::is_same<meta::nil_, invoke_result_t<Ifoo, int, double>>()));
}
}

Yükleniyor…
İptal
Kaydet