Browse Source

DEV: add deque (based on ring buffer) to utl

master
parent
commit
2895327752
5 changed files with 1635 additions and 0 deletions
  1. +225
    -0
      include/utl/container/deque.h
  2. +64
    -0
      include/utl/container/range.h
  3. +453
    -0
      include/utl/container/ring_iterator.h
  4. +469
    -0
      test/tests/deque.cpp
  5. +424
    -0
      test/tests/ring_iterator.cpp

+ 225
- 0
include/utl/container/deque.h View File

@@ -0,0 +1,225 @@
/*!
* \file container/deque.h
* \brief
* A statically allocated deque based on a ring buffer.
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef utl_container_deque_h__
#define utl_container_deque_h__
#include <utl/core/impl.h>
#include <utl/container/ring_iterator.h>
#include <utl/container/range.h>
#include <array>
#include <atomic>
namespace utl {
/*!
* \class deque
* \brief
* A statically allocated deque based on a ring buffer
*
* The deque uses two ring_iterators one for the front and one for the rear. The iterators
* are pointing to the next available spot, not on the last inserted spot. This way at the
* initialization the iterators wont "pretend" to point to a valid item .
*
* We use a ring buffer of size \c N+1. We start the front iterator at the last location of the buffer
* and the rear on the first. This way when the queue is full the iterators are pointing to the same location.
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of deque
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
* \note
* SemiAtomic means it is safe to access different ends from different threads. For example one thread can
* push only from front and another can pop from back to implement a queue.
*/
template <typename Data_t, size_t N, bool SemiAtomic =false>
class deque {
public:
// meta-identity type
using type = deque<Data_t, N>;
using buffer_t = std::array<Data_t, N+1>; // We need N+1 spaces ring buffer for N spaces deque
using iterator_t = ring_iterator<Data_t*, N+1, SemiAtomic>;
using range_t = range<iterator_t>;
// STL
using value_type = Data_t;
using reference = Data_t&;
using const_reference = const Data_t&;
using pointer = Data_t*;
using const_pointer = const Data_t*;
using iterator = iterator_t;
using const_iterator = const iterator_t;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
//! \name Constructor / Destructor
//! @{
public:
//! Default constructor
constexpr deque () noexcept :
data_{},
f{data_.data(), N},
r{data_.data()} {
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! fill contructor
constexpr deque(const Data_t& value) noexcept {
data_.fill(value);
f = iterator(data_.data(), N);
r = iterator(data_.data(), N);
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! Initializer list contructor
template <typename ...It>
constexpr deque(It&& ...it) noexcept :
data_{{std::forward<It>(it)...}},
f(data_.data(), N),
r(data_.data(), sizeof...(It)) {
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
deque(const deque&) = delete; //!< No copies
deque& operator= (const deque&) = delete; //!< No copy assignments
~deque () = default; //!< default destructor
//! @}
//! \name Iterators
//! @{
public:
constexpr iterator begin() noexcept { iterator ret = f; return ++ret; }
constexpr const_iterator begin() const noexcept { iterator ret = f; return ++ret; }
constexpr const_iterator cbegin() const noexcept { iterator ret = f; return ++ret; }
constexpr iterator end() noexcept { return r; }
constexpr const_iterator end() const noexcept { return r; }
constexpr const_iterator cend() const noexcept { return r; }
constexpr reverse_iterator rbegin() noexcept { return r; }
constexpr const_reverse_iterator rbegin() const noexcept { return r; }
constexpr const_reverse_iterator crbegin() const noexcept { return r; }
constexpr reverse_iterator rend() noexcept { reverse_iterator ret = f; return ++ret; }
constexpr const_reverse_iterator rend() const noexcept { reverse_iterator ret = f; return ++ret; }
constexpr const_reverse_iterator crend() const noexcept { reverse_iterator ret = f; return ++ret; }
//! @}
//! \name Capacity
//! @{
public:
//! \return The size of the deque. The items currently in queue.
constexpr size_t size() noexcept {
return r - (f +1);
}
constexpr size_t size() const noexcept {
return r - (f +1);
}
//! \return The maximum size of the deque. The items the queue can hold.
constexpr size_t max_size() noexcept { return N; }
//! \return The capacity of the deque. The items the queue can hold.
constexpr size_t capacity() noexcept { return N; }
//! \return True if the deque is empty
constexpr bool empty() noexcept { return size() == 0 ? true : false; }
//! \return True if the deque is full
constexpr bool full() noexcept { return size() == N ? true : false; }
//! @}
//! \name Member access
//! @{
public:
//! \brief Clears-empty the deque and return it to init state, without
//! really deleting the contents.
constexpr void clear() noexcept {
f = iterator_t(data_.data(), N);
r = iterator_t(data_.data());
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! \brief Push an item in the front of the deque
//! \param it The item to push
constexpr void push_front (const Data_t& it) noexcept {
if (full()) return;
*f = it;
--f; // keep this separate for thread safety
}
//! \brief Push an item in the back of the deque
//! \param it The item to push
constexpr void push_back (const Data_t& it) noexcept {
if (full()) return;
*r = it;
++r; // keep this separate for thread safety
}
//! \brief Extract an item from the front of the deque and remove it from the deque
//! \param it The item to push
constexpr Data_t pop_front () noexcept {
if (empty()) return Data_t{};
return *++f;
}
//! \brief Extract an item from the back of the deque and remove it from the deque
//! \param it The item to push
constexpr Data_t pop_back () noexcept {
if (empty()) return Data_t{};
return *--r;
}
//! \brief Get a reference to the item in the front of the deque without extracting it.
//! \return Reference to the item
constexpr Data_t& front() noexcept { iterator_t it = f; return *++it; }
constexpr const Data_t& front() const noexcept { iterator_t it = f; return *++it; }
//! \brief Get a reference to the item in the front of the deque without extracting it.
//! \return Reference to the item
constexpr Data_t& back() noexcept { iterator_t it = r; return *--it; }
constexpr const Data_t& back() const noexcept { iterator_t it = r; return *--it; }
//! \brief Get a pointer to the begin of the items on the deque
//! \return
constexpr Data_t* data() noexcept { return &front(); }
constexpr const Data_t* data() const noexcept { return &front(); }
//! \brief Get a range for the data in queue
//! \return A begin-end iterator pair struct
constexpr range_t contents () noexcept { iterator_t b = f; return {++b, r}; }
constexpr const range_t contents () const noexcept { iterator_t b = f; return {++b, r}; }
//! @}
private:
buffer_t data_{}; //!< The statically allocated buffer
iterator_t f{data_.data(), N}; //!< A ring iterator for the front (points to the next available location)
iterator_t r{data_.data()}; //!< A ring iterator for the rear (points to the next available location).
};
} // namespace utl
#endif /* utl_container_deque_h__ */

+ 64
- 0
include/utl/container/range.h View File

@@ -0,0 +1,64 @@
/*!
* \file container/range.h
* \brief
* A plain definition of a range struct with agregate initialization
* and begin-end pairs.
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef utl_container_range_h__
#define utl_container_range_h__
#include <utl/core/impl.h>
namespace utl {
/*!
* \brief
* A plain definition of a range struct with begin-end pairs.
*
* \tparam Iter_t The iterator type of the range
*/
template <typename Iter_t>
struct range {
Iter_t b{}, e{};
// range () = default;
// range (const Iter_t& first, const Iter_t& last) noexcept :
// b(first), e(last) { }
// range (Iter_t first, Iter_t last) noexcept :
// b(first), e(last) { }
Iter_t begin() { return b; }
const Iter_t begin() const { return b; }
const Iter_t cbegin() const { return b; }
Iter_t end() { return e; }
const Iter_t end() const { return e; }
const Iter_t cend() const { return e; }
};
} // namespace utl;
#endif /* utl_container_range_h__ */

+ 453
- 0
include/utl/container/ring_iterator.h View File

@@ -0,0 +1,453 @@
/*!
* \file container/ring_iterator.h
* \brief
* A ring/circular iterator.
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef utl_container_ring_iterator_h__
#define utl_container_ring_iterator_h__
#include <utl/core/impl.h>
#include <iterator>
#include <type_traits>
#include <atomic>
namespace utl {
template<typename Iter_t, size_t N, bool Atomic=false>
class ring_iterator {
//! \name STL iterator traits "forwarding"
//! @{
protected:
using traits_type = std::iterator_traits<Iter_t>;
public:
using iterator_type = Iter_t;
using iterator_category = typename traits_type::iterator_category;
using value_type = typename traits_type::value_type;
using difference_type = typename traits_type::difference_type;
using reference = typename traits_type::reference;
using pointer = typename traits_type::pointer;
//! @}
//! \name Constructor / Destructor
//! @{
public:
constexpr ring_iterator(const Iter_t base =nullptr) noexcept :
base_(base), iter_(base) { }
constexpr ring_iterator(const Iter_t base, size_t elem) noexcept :
base_(base), iter_(base + elem) { }
constexpr ring_iterator(const ring_iterator& it) noexcept :
base_(it.base_), iter_(it.iter_) { }
constexpr ring_iterator& operator= (const ring_iterator& it) noexcept {
base_ = it.base_;
iter_ = it.iter_;
return *this;
}
//! @}
//! \name Forward iterator requirements
//! @{
public:
constexpr reference operator*() const noexcept {
return *iter_;
}
constexpr pointer operator->() const noexcept {
return iter_;
}
constexpr ring_iterator& operator++() noexcept {
if (static_cast<size_t>(++iter_ - base_) >= N)
iter_ = base_;
return *this;
}
constexpr ring_iterator operator++(int) noexcept {
ring_iterator it = *this;
if (static_cast<size_t>(++iter_ - base_) >= N)
iter_ = base_;
return it;
}
//! @}
//! \name Bidirectional iterator requirements
//! @{
public:
constexpr ring_iterator& operator--() noexcept {
if (--iter_ < base_)
iter_ = base_ + N -1;
return *this;
}
constexpr ring_iterator operator--(int) noexcept {
ring_iterator it = *this;
if (--iter_ < base_)
iter_ = base_ + N -1;
return it;
}
//! @}
//! \name Random access iterator requirements
//! @{
constexpr reference operator[](difference_type n) const noexcept {
difference_type k = iter_ - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
base_[k + n] : // on range
base_[k + n - N]; // out of range, loop
}
constexpr ring_iterator& operator+=(difference_type n) noexcept {
difference_type k = iter_ - base_; // ptrdiff from base_
iter_ += (static_cast<size_t>(k + n) < N) ?
n : // on range
n - N; // out of range, loop
return *this;
}
constexpr ring_iterator operator+(difference_type n) const noexcept {
difference_type k = iter_ - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
ring_iterator(base_, k + n) : // on range
ring_iterator(base_, k + n - N); // out of range, loop
}
constexpr ring_iterator& operator-=(difference_type n) noexcept {
difference_type k = iter_ - base_; // ptrdiff from base_
iter_ -= ((k - n) < 0)?
n - N: // out of range, loop
n; // on range
return *this;
}
constexpr ring_iterator operator-(difference_type n) const noexcept {
difference_type k = iter_ - base_; // ptrdiff from base_
return ((k - n) < 0) ?
ring_iterator(base_, k - n + N) : // out of range, loop
ring_iterator(base_, k - n); // on range
}
//! @}
//! \name Data members and access
//! @{
constexpr const Iter_t& base() const noexcept {
return base_;
}
constexpr const Iter_t& iter() const noexcept {
return iter_;
}
constexpr size_t size() noexcept {
return N;
}
constexpr operator Iter_t() noexcept { return iter_; }
constexpr operator const Iter_t() const noexcept { return iter_; }
protected:
Iter_t base_;
Iter_t iter_;
//! @}
};
// Forward iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator==(const ring_iterator<Iter_L, N>& lhs, const ring_iterator<Iter_R, N>& rhs)
noexcept {
return lhs.iter() == rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator!=(const ring_iterator<Iter_L, N>& lhs, const ring_iterator<Iter_R, N>& rhs)
noexcept {
return lhs.iter() != rhs.iter();
}
// Random access iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<(const ring_iterator<Iter_L, N>& lhs, const ring_iterator<Iter_R, N>& rhs)
noexcept {
return lhs.iter() < rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<=(const ring_iterator<Iter_L, N>& lhs, const ring_iterator<Iter_R, N>& rhs)
noexcept {
return lhs.iter() <= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>(const ring_iterator<Iter_L, N>& lhs, const ring_iterator<Iter_R, N>& rhs)
noexcept {
return lhs.iter() > rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>=(const ring_iterator<Iter_L, N>& lhs, const ring_iterator<Iter_R, N>& rhs)
noexcept {
return lhs.iter() >= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline auto operator-(const ring_iterator<Iter_L, N>& lhs, const ring_iterator<Iter_R, N>& rhs)
noexcept
-> decltype(lhs.iter() - rhs.iter()) {
auto diff = lhs.iter() - rhs.iter();
return diff < 0 ?
diff + N : // loop
diff; // no loop
}
template<typename Iter, size_t N>
inline ring_iterator<Iter, N> operator+(std::ptrdiff_t lhs, const ring_iterator<Iter, N>& rhs)
noexcept {
ring_iterator<Iter, N> it(rhs.iter());
return it += lhs;
}
template<typename Iter_t, size_t N>
class ring_iterator<Iter_t, N, true> {
//! \name STL iterator traits "forwarding"
//! @{
protected:
using traits_type = std::iterator_traits<Iter_t>;
public:
using iterator_type = Iter_t;
using iterator_category = typename traits_type::iterator_category;
using value_type = typename traits_type::value_type;
using difference_type = typename traits_type::difference_type;
using reference = typename traits_type::reference;
using pointer = typename traits_type::pointer;
//! @}
//! \name Constructor / Destructor
//! @{
public:
constexpr ring_iterator(const Iter_t base =nullptr) noexcept :
base_(base), iter_(base) { }
constexpr ring_iterator(const Iter_t base, size_t elem) noexcept :
base_(base), iter_(base + elem) { }
constexpr ring_iterator(const ring_iterator& it) noexcept :
base_(it.base_) {
iter_ = it.iter_.load(std::memory_order_acquire);
}
constexpr ring_iterator& operator= (const ring_iterator& it) noexcept {
base_ = it.base_;
iter_ = it.iter_.load(std::memory_order_acquire);
return *this;
}
//! @}
//! \name Forward iterator requirements
//! @{
public:
constexpr reference operator*() const noexcept {
return *iter_.load(std::memory_order_acquire);
}
constexpr pointer operator->() const noexcept {
return iter_.load(std::memory_order_acquire);
}
constexpr ring_iterator& operator++() noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (static_cast<size_t>(++itnew - base_) >= N)
itnew = base_;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return *this;
}
constexpr ring_iterator operator++(int) noexcept {
ring_iterator ret = *this;
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (static_cast<size_t>(++itnew - base_) >= N)
itnew = base_;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return ret;
}
//! @}
//! \name Bidirectional iterator requirements
//! @{
public:
constexpr ring_iterator& operator--() noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (--itnew < base_)
itnew = base_ + N -1;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return *this;
}
constexpr ring_iterator operator--(int) noexcept {
ring_iterator ret = *this;
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (--itnew < base_)
itnew = base_ + N -1;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return ret;
}
//! @}
//! \name Random access iterator requirements
//! @{
constexpr reference operator[](difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
base_[k + n] : // on range
base_[k + n - N]; // out of range, loop
}
constexpr ring_iterator& operator+=(difference_type n) noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
difference_type k = it - base_; // ptrdiff from base_
itnew += (static_cast<size_t>(k + n) < N) ?
n : // on range
n - N; // out of range, loop
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acquire));
return *this;
}
constexpr ring_iterator operator+(difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
ring_iterator(base_, k + n) : // on range
ring_iterator(base_, k + n - N); // out of range, loop
}
constexpr ring_iterator& operator-=(difference_type n) noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
difference_type k = it - base_; // ptrdiff from base_
itnew -= ((k - n) < 0)?
n - N: // out of range, loop
n; // on range
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acquire));
return *this;
}
constexpr ring_iterator operator-(difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return ((k - n) < 0) ?
ring_iterator(base_, k - n + N) : // out of range, loop
ring_iterator(base_, k - n); // on range
}
//! @}
//! \name Data members and access
//! @{
constexpr const Iter_t& base() const noexcept {
return base_;
}
constexpr const Iter_t iter() const noexcept {
return iter_.load(std::memory_order_acquire);
}
constexpr size_t size() noexcept {
return N;
}
constexpr operator Iter_t() noexcept { return iter_.load(std::memory_order_acquire); }
constexpr operator const Iter_t() const noexcept { return iter_.load(std::memory_order_acquire); }
protected:
Iter_t base_;
std::atomic<Iter_t> iter_;
//! @}
};
// Forward iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator==(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() == rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator!=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() != rhs.iter();
}
// Random access iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() < rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() <= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() > rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() >= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline auto operator-(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept
-> decltype(lhs.iter() - rhs.iter()) {
auto diff = lhs.iter() - rhs.iter();
return diff < 0 ?
diff + N : // loop
diff; // no loop
}
template<typename Iter, size_t N>
inline ring_iterator<Iter, N, true> operator+(std::ptrdiff_t lhs, const ring_iterator<Iter, N, true>& rhs)
noexcept {
ring_iterator<Iter, N, true> it(rhs.iter());
return it += lhs;
}
} //namespace utl;
#endif /* utl_container_ring_iterator_h__ */

+ 469
- 0
test/tests/deque.cpp View File

@@ -0,0 +1,469 @@
/*!
* \file deque.cpp
* \brief
* Unit tests for deque
*
* \copyright Copyright (C) 2020 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*
*/
#include <utl/container/deque.h>
//#include <utl/container/span.h>
#include <gtest/gtest.h>
#include <array>
#include <type_traits>
#include <cstring>
#ifndef WIN_TRHEADS
#include <mutex>
#include <thread>
#else
#include <mingw.thread.h>
#include <mingw.mutex.h>
#endif
namespace Tdeque {
using namespace utl;
// template <typename>
// struct is_span : std::false_type {};
//
// template <typename T, std::size_t S>
// struct is_span<tbx::span<T, S>> : std::true_type {};
template <typename>
struct is_std_array : std::false_type {};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename, typename = void>
struct has_size_and_data : std::false_type {};
template <typename T>
struct has_size_and_data<T, std::void_t<decltype(std::declval<T>().size()),
decltype(std::declval<T>().data())>>
: std::true_type {};
// Concept
TEST(Tdeque, concept) {
using deque_t = deque<int, 8>;
EXPECT_EQ ( std::is_default_constructible<deque_t>::value, true);
EXPECT_EQ ( std::is_nothrow_default_constructible<deque_t>::value, true);
EXPECT_EQ (!std::is_copy_constructible<deque_t>::value, true);
EXPECT_EQ (!std::is_copy_assignable<deque_t>::value, true);
// EXPECT_EQ (true, !is_span<deque_t>::value);
EXPECT_EQ (true, !is_std_array<deque_t>::value);
EXPECT_EQ (true, !std::is_array<deque_t>::value);
EXPECT_EQ (true, has_size_and_data<deque_t>::value);
}
// Test construction
TEST(Tdeque, contruct) {
deque<int, 8> q1;
deque<int, 8> q2{1, 2, 3, 4, 5, 6, 7, 8};
deque<int, 8> q3{1, 2, 3, 4, 5};
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (8UL, q3.capacity());
EXPECT_EQ (5UL, q3.size());
}
// simple push-pop functionality
TEST(Tdeque, push_pop) {
deque<int, 8> q1;
deque<int, 8> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(1);
q1.push_front(2);
EXPECT_EQ (1, q1.pop_back());
EXPECT_EQ (2, q1.pop_back());
q1.push_back(1);
q1.push_back(2);
EXPECT_EQ (1, q1.pop_front());
EXPECT_EQ (2, q1.pop_front());
q1.push_front(2);
q1.push_back(3);
q1.push_front(1);
q1.push_back(4);
for (int i=1 ; i<= 4 ; ++i)
EXPECT_EQ ((int)i, q1.pop_front());
}
// front-back
TEST(Tdeque, front_back) {
deque<int, 8> q1;
deque<int, 8> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(2);
q1.push_front(1);
q1.push_back(3);
q1.push_back(4);
EXPECT_EQ (1, q1.front());
EXPECT_EQ (4, q1.back());
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
}
// capacity
TEST(Tdeque, capacity) {
deque<int, 8> q1;
deque<int, 8> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_back(1);
q1.clear();
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (true, q2.full());
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.size());
q1.push_back(2);
EXPECT_EQ (1UL, q1.size());
q1.push_front(1);
EXPECT_EQ (2UL, q1.size());
q1.pop_back();
EXPECT_EQ (1UL, q1.size());
q1.pop_front();
EXPECT_EQ (0UL, q1.size());
}
// push-pop limits
TEST (Tdeque, push_pop_limits) {
deque<int, 8> q1;
deque<int, 8> q2{1, 2, 3, 4, 5, 6, 7, 8};
EXPECT_EQ (int{}, q1.pop_back());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
EXPECT_EQ (int{}, q1.pop_front());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
q2.push_front(0);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
q2.push_back(9);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
}
// iterators
TEST (Tdeque, iterators) {
deque<int, 8> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
EXPECT_EQ (q1.begin().base(), q1.end().base());
EXPECT_NE (q1.begin().iter(), q1.end().iter());
EXPECT_EQ (1, *q1.begin());
EXPECT_EQ (true, (q1.begin() == ++q1.end())); // loop edge iterators
for (auto it = q1.begin() ; it != q1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(9, check_it); // run through all
EXPECT_EQ (1, q1.front()); // queue stays intact
EXPECT_EQ (8, q1.back());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
q1.pop_front();
q1.pop_back();
check_it=2;
for (auto& it : q1)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(8, check_it); // run through all
EXPECT_EQ (2, q1.front()); // queue stays intact
EXPECT_EQ (7, q1.back());
EXPECT_EQ (6UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (false, q1.full());
deque<int, 8> q2;
q2.push_front(2);
q2.push_front(1);
q2.push_back(3);
q2.push_back(4);
q2.push_back(5);
check_it =1;
for (auto& it : q2)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(6, check_it); // run through all
}
TEST (Tdeque, range) {
deque<int, 8> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
for (auto& it : q1.contents())
EXPECT_EQ(it, check_it++);
EXPECT_EQ(9, check_it); // run through all
}
// Concept
TEST(Tdeque, concept_atomic) {
using deque_t = deque<int, 8, true>;
// EXPECT_EQ (true, !is_span<deque_t>::value);
EXPECT_EQ (true, !is_std_array<deque_t>::value);
EXPECT_EQ (true, !std::is_array<deque_t>::value);
EXPECT_EQ (true, has_size_and_data<deque_t>::value);
}
// Test construction
TEST(Tdeque, contruct_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
deque<int, 8, true> q3{1, 2, 3, 4, 5};
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (8UL, q3.capacity());
EXPECT_EQ (5UL, q3.size());
}
// simple push-pop functionality
TEST(Tdeque, push_pop_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(1);
q1.push_front(2);
EXPECT_EQ (1, q1.pop_back());
EXPECT_EQ (2, q1.pop_back());
q1.push_back(1);
q1.push_back(2);
EXPECT_EQ (1, q1.pop_front());
EXPECT_EQ (2, q1.pop_front());
q1.push_front(2);
q1.push_back(3);
q1.push_front(1);
q1.push_back(4);
for (int i=1 ; i<= 4 ; ++i)
EXPECT_EQ ((int)i, q1.pop_front());
}
// front-back
TEST(Tdeque, front_back_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(2);
q1.push_front(1);
q1.push_back(3);
q1.push_back(4);
EXPECT_EQ (1, q1.front());
EXPECT_EQ (4, q1.back());
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
}
// capacity
TEST(Tdeque, capacity_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_back(1);
q1.clear();
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (true, q2.full());
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.size());
q1.push_back(2);
EXPECT_EQ (1UL, q1.size());
q1.push_front(1);
EXPECT_EQ (2UL, q1.size());
q1.pop_back();
EXPECT_EQ (1UL, q1.size());
q1.pop_front();
EXPECT_EQ (0UL, q1.size());
}
// push-pop limits
TEST (Tdeque, push_pop_limits_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
EXPECT_EQ (int{}, q1.pop_back());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
EXPECT_EQ (int{}, q1.pop_front());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
q2.push_front(0);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
q2.push_back(9);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
}
// iterators
TEST (Tdeque, iterators_atomic) {
deque<int, 8, true> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
EXPECT_EQ (q1.begin().base(), q1.end().base());
EXPECT_NE (q1.begin().iter(), q1.end().iter());
EXPECT_EQ (1, *q1.begin());
EXPECT_EQ (true, (q1.begin() == ++q1.end())); // loop edge iterators
for (auto it = q1.begin() ; it != q1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(9, check_it); // run through all
EXPECT_EQ (1, q1.front()); // queue stays intact
EXPECT_EQ (8, q1.back());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
q1.pop_front();
q1.pop_back();
check_it=2;
for (auto& it : q1)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(8, check_it); // run through all
EXPECT_EQ (2, q1.front()); // queue stays intact
EXPECT_EQ (7, q1.back());
EXPECT_EQ (6UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (false, q1.full());
deque<int, 8, true> q2;
q2.push_front(2);
q2.push_front(1);
q2.push_back(3);
q2.push_back(4);
q2.push_back(5);
check_it =1;
for (auto& it : q2)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(6, check_it); // run through all
}
TEST (Tdeque, range_atomic) {
deque<int, 8, true> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
for (auto& it : q1.contents())
EXPECT_EQ(it, check_it++);
EXPECT_EQ(9, check_it); // run through all
}
TEST(Tdeque, race) {
constexpr size_t N = 1000000;
deque<int, N, true> q;
int result[N];
auto push_front = [&](){
for (size_t i=1 ; i<=N ; ++i) q.push_front(i);
};
auto push_back = [&](){
for (size_t i=1 ; i<=N ; ++i) q.push_back(i);
};
auto pop_front = [&](){
for (size_t i=0 ; i<N ; ) {
result[i] = q.pop_front();
if (result[i] != int{})
++i;
}
};
auto pop_back = [&](){
for (size_t i=0 ; i<N ; ) {
result[i] = q.pop_back();
if (result[i] != int{})
++i;
}
};
std::memset(result, 0, sizeof result);
std::thread th1 (push_front);
std::thread th2 (pop_back);
th1.join();
th2.join();
for (size_t i=0 ; i<N ; ++i)
EXPECT_EQ (result[i], (int)i+1);
std::memset(result, 0, sizeof result);
std::thread th3 (push_back);
std::thread th4 (pop_front);
th3.join();
th4.join();
for (size_t i=0 ; i<N ; ++i)
EXPECT_EQ (result[i], (int)i+1);
}
}

+ 424
- 0
test/tests/ring_iterator.cpp View File

@@ -0,0 +1,424 @@
/*!
* \file ring_iterator.cpp
* \brief
* Unit tests for ring_iterator
*
* \copyright Copyright (C) 2020 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*
*/
#include <utl/container/ring_iterator.h>
#include <gtest/gtest.h>
#include <array>
#include <type_traits>
namespace Tring_iterator {
using namespace utl;
// Test construction
TEST(Tring_iterator, construct) {
int A[10];
//default constructor
ring_iterator<int*, 10> i1;
EXPECT_EQ(nullptr, i1.base());
EXPECT_EQ(nullptr, i1.iter());
EXPECT_EQ(10UL, i1.size());
// implementation specific (you can remove it freely)
EXPECT_EQ(2*sizeof(int*), sizeof(i1));
// basic
ring_iterator<int*, 10> i2(A);
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// basic from assignment
ring_iterator<int*, 10> i3 = A;
EXPECT_EQ(A, i3.base());
EXPECT_EQ(A, i3.iter());
EXPECT_EQ(10UL, i3.size());
// basic with offset
ring_iterator<int*, 10> i4(A, 5);
EXPECT_EQ(A, i4.base());
EXPECT_EQ(&A[5], i4.iter());
EXPECT_EQ(10UL, i4.size());
// copy (Legacy iterator)
auto i5 = i2;
EXPECT_EQ(A, i5.base());
EXPECT_EQ(A, i5.iter());
EXPECT_EQ(10UL, i5.size());
// arbitrary type
struct TT { int a,b,c; };
std::array<TT, 10> t;
ring_iterator<TT*, 10> it(t.data(), 2);
EXPECT_EQ(t.begin(), it.base());
EXPECT_EQ(&t[2], it.iter());
EXPECT_EQ(10UL, it.size());
}
// Legacy iterator
TEST(Tring_iterator, LegacyIterator) {
EXPECT_EQ(true, (std::is_same<int, typename ring_iterator<int*, 10>::value_type>::value));
EXPECT_EQ(true, (std::is_same<std::ptrdiff_t, typename ring_iterator<int*, 10>::difference_type>::value));
EXPECT_EQ(true, (std::is_same<int&, typename ring_iterator<int*, 10>::reference>::value));
EXPECT_EQ(true, (std::is_same<int*, typename ring_iterator<int*, 10>::pointer>::value));
EXPECT_EQ(true, (std::is_same<std::random_access_iterator_tag, typename ring_iterator<int*, 10>::iterator_category>::value));
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10> i1(A);
// copy constructible/assignable
auto i2 = i1;
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// dereferenceable - incrementable
ring_iterator<int*, 10> i3(A);
EXPECT_EQ(true, (std::is_reference<decltype(*i3)>::value));
EXPECT_EQ(true, (std::is_same<ring_iterator<int*, 10>&, decltype(++i3)>::value));
EXPECT_EQ(true, (std::is_reference<decltype((*i3++))>::value));
// more practical
ring_iterator<int*, 10> i4(A);
ring_iterator<int*, 10> i5(A, 9);
EXPECT_EQ(A[0], *i4);
EXPECT_EQ(&A[1], (++i4).iter());
// check loop
EXPECT_EQ(A[9], *i5);
EXPECT_EQ(&A[0], (++i5).iter());
}
// Legacy input iterator
TEST(Tring_iterator, LegacyInputIterator) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10> i1(A), i2(A), i3(A, 1);
struct T { int m; };
T B[5] { {0}, {1}, {2}, {3}, {4}};
ring_iterator<T*, 5> it(B);
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 == i2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 != i2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1)>::value));
EXPECT_EQ (true, (std::is_same<int, decltype(it->m)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>&, decltype(++i1)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1++)>::value));
// more practical
EXPECT_EQ (true, i1 == i2);
EXPECT_EQ (true, i1 != i3);
EXPECT_EQ (0, *i1);
EXPECT_EQ (0, it->m);
EXPECT_EQ (true, (++i1 == i3));
EXPECT_EQ (1, *i1++);
EXPECT_EQ (2, *i1);
}
// Legacy input iterator
TEST(Tring_iterator, LegacyOutputIterator) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10> it(A);
EXPECT_EQ (true, (std::is_assignable<decltype(*it), int>::value));
EXPECT_EQ (true, (std::is_assignable<decltype(*it++), int>::value));
// more practical
*it = 42;
EXPECT_EQ (42, A[0]);
*it++ = 7;
EXPECT_EQ (7, A[0]);
EXPECT_EQ (&A[1], it.iter());
}
// Legacy forward iterator
TEST(Tring_iterator, LegacyForwardIterator)
{
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10> it(A);
EXPECT_EQ (0, *it++);
EXPECT_EQ (1, *it);
}
// Legacy bidirectional iterator
TEST(Tring_iterator, LegacyBidirectionalIterator) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10> it(A);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>&, decltype(--it)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>, decltype(it--)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*it--)>::value));
// more practical
ring_iterator<int*, 10> i1(A), i2(A, 9);
EXPECT_EQ (9, *i2--); // check loop also
EXPECT_EQ (8, *i2);
EXPECT_EQ (0, *i1--); // check loop also
EXPECT_EQ (9, *i1);
}
// Legacy random access iterator
TEST(Tring_iterator, LegacyRandomAccessIterator) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10> it1(A), it2(A, 7);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>&, decltype(it1 += 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>, decltype(it1 + 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>, decltype(7 + it1)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>&, decltype(it1 -= 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10>, decltype(it1 - 7)>::value));
EXPECT_EQ (true, (std::is_same<std::ptrdiff_t, decltype(it1 - it2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(it1[7])>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 < it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 > it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 <= it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 >= it2)>::value));
// more practical
ring_iterator<int*, 10> i1(A), i2(A);
i1 += 7;
EXPECT_EQ (7, *i1);
i1 -= 7;
EXPECT_EQ (0, *i1);
i1 += 11;
EXPECT_EQ (1, *i1);
i1 -= 2;
EXPECT_EQ (9, *i1);
EXPECT_EQ (7, *(i2+7));
EXPECT_EQ (7, *(7+i2));
EXPECT_EQ (1, *(i2+11));
EXPECT_EQ (1, *(11+i2));
EXPECT_EQ (7, *(i1-2));
EXPECT_EQ (8, *(i2-2));
EXPECT_EQ (9, (i1 - i2));
EXPECT_EQ (1, (i2 - i1)); // loop
}
// Test construction atomic
TEST(Tring_iterator, construct_atomic) {
int A[10];
//default constructor
ring_iterator<int*, 10, true> i1;
EXPECT_EQ(nullptr, i1.base());
EXPECT_EQ(nullptr, i1.iter());
EXPECT_EQ(10UL, i1.size());
// implementation specific (you can remove it freely)
EXPECT_EQ(2*sizeof(int*), sizeof(i1));
// basic
ring_iterator<int*, 10, true> i2(A);
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// basic from assignment
ring_iterator<int*, 10, true> i3 = A;
EXPECT_EQ(A, i3.base());
EXPECT_EQ(A, i3.iter());
EXPECT_EQ(10UL, i3.size());
// basic with offset
ring_iterator<int*, 10, true> i4(A, 5);
EXPECT_EQ(A, i4.base());
EXPECT_EQ(&A[5], i4.iter());
EXPECT_EQ(10UL, i4.size());
// copy (Legacy iterator)
auto i5 = i2;
EXPECT_EQ(A, i5.base());
EXPECT_EQ(A, i5.iter());
EXPECT_EQ(10UL, i5.size());
// arbitrary type
struct TT { int a,b,c; };
std::array<TT, 10> t;
ring_iterator<TT*, 10, true> it(t.data(), 2);
EXPECT_EQ(t.begin(), it.base());
EXPECT_EQ(&t[2], it.iter());
EXPECT_EQ(10UL, it.size());
}
// Legacy iterator atomic
TEST(Tring_iterator, LegacyIterator_atomic) {
EXPECT_EQ(true, (std::is_same<int, typename ring_iterator<int*, 10, true>::value_type>::value));
EXPECT_EQ(true, (std::is_same<std::ptrdiff_t, typename ring_iterator<int*, 10, true>::difference_type>::value));
EXPECT_EQ(true, (std::is_same<int&, typename ring_iterator<int*, 10, true>::reference>::value));
EXPECT_EQ(true, (std::is_same<int*, typename ring_iterator<int*, 10, true>::pointer>::value));
EXPECT_EQ(true, (std::is_same<std::random_access_iterator_tag, typename ring_iterator<int*, 10, true>::iterator_category>::value));
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> i1(A);
// copy constructible/assignable
auto i2 = i1;
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// dereferenceable - incrementable
ring_iterator<int*, 10, true> i3(A);
EXPECT_EQ(true, (std::is_reference<decltype(*i3)>::value));
EXPECT_EQ(true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(++i3)>::value));
EXPECT_EQ(true, (std::is_reference<decltype((*i3++))>::value));
// more practical
ring_iterator<int*, 10, true> i4(A);
ring_iterator<int*, 10, true> i5(A, 9);
EXPECT_EQ(A[0], *i4);
EXPECT_EQ(&A[1], (++i4).iter());
// check loop
EXPECT_EQ(A[9], *i5);
EXPECT_EQ(&A[0], (++i5).iter());
}
// Legacy input iterator atomic
TEST(Tring_iterator, LegacyInputIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> i1(A), i2(A), i3(A, 1);
struct T { int m; };
T B[5] { {0}, {1}, {2}, {3}, {4}};
ring_iterator<T*, 5, true> it(B);
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 == i2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 != i2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1)>::value));
EXPECT_EQ (true, (std::is_same<int, decltype(it->m)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(++i1)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1++)>::value));
// more practical
EXPECT_EQ (true, i1 == i2);
EXPECT_EQ (true, i1 != i3);
EXPECT_EQ (0, *i1);
EXPECT_EQ (0, it->m);
EXPECT_EQ (true, (++i1 == i3));
EXPECT_EQ (1, *i1++);
EXPECT_EQ (2, *i1);
}
// Legacy input iterator atomic
TEST(Tring_iterator, LegacyOutputIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (true, (std::is_assignable<decltype(*it), int>::value));
EXPECT_EQ (true, (std::is_assignable<decltype(*it++), int>::value));
// more practical
*it = 42;
EXPECT_EQ (42, A[0]);
*it++ = 7;
EXPECT_EQ (7, A[0]);
EXPECT_EQ (&A[1], it.iter());
}
// Legacy forward iterator atomic
TEST(Tring_iterator, LegacyForwardIterator_atomic)
{
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (0, *it++);
EXPECT_EQ (1, *it);
}
// Legacy bidirectional iterator atomic
TEST(Tring_iterator, LegacyBidirectionalIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(--it)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it--)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*it--)>::value));
// more practical
ring_iterator<int*, 10, true> i1(A), i2(A, 9);
EXPECT_EQ (9, *i2--); // check loop also
EXPECT_EQ (8, *i2);
EXPECT_EQ (0, *i1--); // check loop also
EXPECT_EQ (9, *i1);
}
// Legacy random access iterator atomic
TEST(Tring_iterator, LegacyRandomAccessIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it1(A), it2(A, 7);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(it1 += 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it1 + 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(7 + it1)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(it1 -= 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it1 - 7)>::value));
EXPECT_EQ (true, (std::is_same<std::ptrdiff_t, decltype(it1 - it2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(it1[7])>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 < it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 > it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 <= it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 >= it2)>::value));
// more practical
ring_iterator<int*, 10, true> i1(A), i2(A);
i1 += 7;
EXPECT_EQ (7, *i1);
i1 -= 7;
EXPECT_EQ (0, *i1);
i1 += 11;
EXPECT_EQ (1, *i1);
i1 -= 2;
EXPECT_EQ (9, *i1);
EXPECT_EQ (7, *(i2+7));
EXPECT_EQ (7, *(7+i2));
EXPECT_EQ (1, *(i2+11));
EXPECT_EQ (1, *(11+i2));
EXPECT_EQ (7, *(i1-2));
EXPECT_EQ (8, *(i2-2));
EXPECT_EQ (9, (i1 - i2));
EXPECT_EQ (1, (i2 - i1)); // loop
}
}

Loading…
Cancel
Save