Compare commits

..

3 Commits

22 changed files with 3212 additions and 176 deletions

3
.gitmodules vendored Normal file
View File

@ -0,0 +1,3 @@
[submodule "test/mingw-std-threads"]
path = test/mingw-std-threads
url = https://github.com/meganz/mingw-std-threads.git

View File

@ -33,8 +33,10 @@
#include <core/core.h>
#include <core/ring_iterator.h>
#include <cont/range.h>
#include <array>
#include <atomic>
namespace tbx {
@ -50,16 +52,21 @@ namespace tbx {
* We use a ring buffer of size \c N+1. We start the front iterator at the last location of the buffer
* and the rear on the first. This way when the queue is full the iterators are pointing to the same location.
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of deque
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of deque
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
* \note
* SemiAtomic means it is safe to access different ends from different threads. For example one thread can
* push only from front and another can pop from back to implement a queue.
*/
template <typename Data_t, size_t N>
template <typename Data_t, size_t N, bool SemiAtomic =false>
class deque {
public:
// meta-identity type
using type = deque<Data_t, N>;
using buffer_t = std::array<Data_t, N+1>; // We need N+1 spaces ring buffer for N spaces deque
using iterator_t = ring_iterator<Data_t*, N+1>;
using iterator_t = ring_iterator<Data_t*, N+1, SemiAtomic>;
using range_t = range<iterator_t>;
// STL
using value_type = Data_t;
@ -103,9 +110,9 @@ class deque {
//! \name Iterators
//! @{
public:
constexpr iterator begin() noexcept { return f+1; }
constexpr const_iterator begin() const noexcept { return f+1; }
constexpr const_iterator cbegin() const noexcept { return f+1; }
constexpr iterator begin() noexcept { iterator ret = f; return ++ret; }
constexpr const_iterator begin() const noexcept { iterator ret = f; return ++ret; }
constexpr const_iterator cbegin() const noexcept { iterator ret = f; return ++ret; }
constexpr iterator end() noexcept { return r; }
constexpr const_iterator end() const noexcept { return r; }
@ -115,9 +122,9 @@ class deque {
constexpr const_reverse_iterator rbegin() const noexcept { return r; }
constexpr const_reverse_iterator crbegin() const noexcept { return r; }
constexpr reverse_iterator rend() noexcept { return f+1; }
constexpr const_reverse_iterator rend() const noexcept { return f+1; }
constexpr const_reverse_iterator crend() const noexcept { return f+1; }
constexpr reverse_iterator rend() noexcept { reverse_iterator ret = f; return ++ret; }
constexpr const_reverse_iterator rend() const noexcept { reverse_iterator ret = f; return ++ret; }
constexpr const_reverse_iterator crend() const noexcept { reverse_iterator ret = f; return ++ret; }
//! @}
//! \name Capacity
@ -127,6 +134,9 @@ class deque {
constexpr size_t size() noexcept {
return full() ? N: (r - f) -1;
}
constexpr size_t size() const noexcept {
return full() ? N: (r - f) -1;
}
//! \return The maximum size of the deque. The items the queue can hold.
constexpr size_t max_size() noexcept { return N; }
//! \return The capacity of the deque. The items the queue can hold.
@ -134,7 +144,11 @@ class deque {
//! \return True if the deque is empty
constexpr bool empty() noexcept { return size() == 0 ? true : false; }
//! \return True if the deque is full
constexpr bool full() noexcept { return (r == f) ? true : false; }
constexpr bool full() noexcept {
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
return (r == f) ? true : false;
}
//! @}
//! \name Member access
@ -145,41 +159,65 @@ class deque {
constexpr void clear() noexcept {
f = iterator_t(data_.data(), N);
r = iterator_t(data_.data());
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! \brief Push an item in the front of the deque
//! \param it The item to push
constexpr void push_front (const Data_t& it) {
if (full()) return;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
*f-- = it;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! \brief Extract an item from the front of the deque and remove it from the deque
//! \param it The item to push
constexpr Data_t pop_front () {
if (empty()) return Data_t{};
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
return *++f;
}
//! \brief Push an item in the back of the deque
//! \param it The item to push
constexpr void push_back (const Data_t& it) {
if (full()) return;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
*r++ = it;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! \brief Extract an item from the back of the deque and remove it from the deque
//! \param it The item to push
constexpr Data_t pop_back () {
if (empty()) return Data_t{};
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
return *--r;
}
//! \brief Get a reference to the item in the front of the deque without extracting it.
//! \return Reference to the item
constexpr Data_t& front() noexcept { return *(f+1); }
constexpr const Data_t& front() const noexcept { return *(f+1); }
constexpr Data_t& front() noexcept { iterator_t it = f; return *++it; }
constexpr const Data_t& front() const noexcept { iterator_t it = f; return *++it; }
//! \brief Get a reference to the item in the front of the deque without extracting it.
//! \return Reference to the item
constexpr Data_t& back() noexcept { return *(r-1); }
constexpr const Data_t& back() const noexcept { return *(r-1); }
constexpr Data_t& back() noexcept { iterator_t it = r; return *--it; }
constexpr const Data_t& back() const noexcept { iterator_t it = r; return *--it; }
//! \brief Get a pointer to the begin of the items on the deque
//! \return
constexpr Data_t* data() noexcept { return &front(); }
constexpr const Data_t* data() const noexcept { return &front(); }
//! \brief Get a range for the data in queue
//! \return A begin-end iterator pair struct
constexpr range_t contents () noexcept { iterator_t b = f; return {++b, r}; }
constexpr const range_t contents () const noexcept { iterator_t b = f; return {++b, r}; }
//! @}
private:

View File

@ -55,17 +55,22 @@ namespace tbx {
* pushed or popped from the deque. If the criteria match we call call the callable of type
* \c Fn
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of edeque
* \tparam Fn The type of Callable
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of edeque
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
* \tparam Fn The type of Callable
* \note
* SemiAtomic means it is safe to access different ends from different threads. For example one thread can
* push only from front and another can pop from back to implement a queue.
*/
template <typename Data_t, size_t N, typename Fn = std::function<void()>>
class edeque : public deque<Data_t, N> {
template <typename Data_t, size_t N, bool SemiAtomic =false, typename Fn = std::function<void()>>
class edeque : public deque<Data_t, N, SemiAtomic> {
public:
// meta-identity types
using type = edeque<Data_t, N>;
using base_type = deque<Data_t, N>;
using type = edeque<Data_t, N, SemiAtomic, Fn>;
using base_type = deque<Data_t, N, SemiAtomic>;
using callable_t = Fn;
using range_t = typename base_type::range_t;
// STL
using value_type = typename base_type::value_type;
@ -89,7 +94,11 @@ class edeque : public deque<Data_t, N> {
enum class size_match { DISABLED =0, EQ, NE, LT, LE, GT, GE };
//! \enum data_match
//! The type of matching for data based match
enum class data_match { DISABLED =0, MATCH, MISMATCH};
enum class data_match { DISABLED =0, MATCH_PUSH, MATCH_POP, MISMATCH_PUSH, MISMATCH_POP};
// TODO: trigger mode for one-shot or repeated functionality
// enum class trigger_mode { ONE_SHOT, REPEATED };
//! \struct size_trigger
//! Size trigger data type
struct size_trigger {
@ -120,7 +129,7 @@ class edeque : public deque<Data_t, N> {
constexpr edeque () noexcept :
base_type() { }
//!
//! Size trigger constructor
constexpr edeque (size_match match, size_t size, callable_t&& fn) :
base_type(),
mode_{match_mode::SIZE},
@ -128,7 +137,7 @@ class edeque : public deque<Data_t, N> {
trigger_.tsize.type = match;
trigger_.tsize.size = size;
}
//! Data trigger constructor
constexpr edeque (data_match match, Data_t value, callable_t&& fn) :
base_type(),
mode_{match_mode::DATA},
@ -186,25 +195,25 @@ class edeque : public deque<Data_t, N> {
//! @{
void push_front (const Data_t& it) {
base_type::push_front(it);
check_trigger_async_(it);
check_trigger_push_async_(it);
}
Data_t pop_front () {
Data_t t = base_type::pop_front();
check_trigger_async_(t);
check_trigger_pop_async_(t);
return t;
}
void push_back (const Data_t& it) {
base_type::push_back(it);
check_trigger_async_(it);
check_trigger_push_async_(it);
}
Data_t pop_back () {
Data_t t = base_type::pop_back();
check_trigger_async_(t);
check_trigger_pop_async_(t);
return t;
}
//! @}
//! \name Public interface
//! \name Private functionality
//! @{
private:
//! \brief
@ -230,28 +239,53 @@ class edeque : public deque<Data_t, N> {
}
//! \brief
//! Manually checks the data trigger and calls it we have match.
//! Manually checks the data trigger on push and calls it we have match.
//! \param it The item to check against
//! \return True if the callable has called.
bool check_trigger_value_ (const Data_t& it) {
bool check_trigger_push_value_ (const Data_t& it) {
bool match;
switch (trigger_.tdata.type) {
default:
case data_match::DISABLED: match = false; break;
case data_match::MATCH: match = (it == trigger_.tdata.value); break;
case data_match::MISMATCH: match = (it != trigger_.tdata.value); break;
case data_match::DISABLED: match = false; break;
case data_match::MATCH_PUSH: match = (it == trigger_.tdata.value); break;
case data_match::MISMATCH_PUSH: match = (it != trigger_.tdata.value); break;
}
if (match)
callback_();
return match;
}
//! Wrapper for both triggers
bool check_trigger_async_ (const Data_t& it) {
//! \brief
//! Manually checks the data trigger on pop and calls it we have match.
//! \param it The item to check against
//! \return True if the callable has called.
bool check_trigger_pop_value_ (const Data_t& it) {
bool match;
switch (trigger_.tdata.type) {
default:
case data_match::DISABLED: match = false; break;
case data_match::MATCH_POP: match = (it == trigger_.tdata.value); break;
case data_match::MISMATCH_POP: match = (it != trigger_.tdata.value); break;
}
if (match)
callback_();
return match;
}
//! Wrapper for both triggers at push
bool check_trigger_push_async_ (const Data_t& it) {
switch (mode_) {
default:
case match_mode::SIZE: return check_trigger_size_();
case match_mode::DATA: return check_trigger_value_(it);
case match_mode::DATA: return check_trigger_push_value_(it);
}
}
//! Wrapper for both triggers at pop
bool check_trigger_pop_async_ (const Data_t& it) {
switch (mode_) {
default:
case match_mode::SIZE: return check_trigger_size_();
case match_mode::DATA: return check_trigger_pop_value_(it);
}
}
//! @}

View File

@ -49,16 +49,20 @@ namespace tbx {
*
* We also provide stream operators.
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of edeque
* \tparam Fn The type of Callable
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of edeque
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
* \tparam Fn The type of Callable
* \note
* SemiAtomic means it is safe to for one thread to push only from front and another can pop.
*/
template <typename Data_t, size_t N, typename Fn = std::function<void()>>
class equeue : public edeque<Data_t, N, Fn> {
template <typename Data_t, size_t N, bool SemiAtomic =false, typename Fn = std::function<void()>>
class equeue : public edeque<Data_t, N, SemiAtomic, Fn> {
public:
// meta-identity types
using equeue_t = equeue<Data_t, N>;
using base_type = edeque<Data_t, N, Fn>;
using equeue_t = equeue<Data_t, N, SemiAtomic, Fn>;
using base_type = edeque<Data_t, N, SemiAtomic, Fn>;
using range_t = typename base_type::range_t;
// STL
using value_type = typename base_type::value_type;
@ -77,10 +81,7 @@ class equeue : public edeque<Data_t, N, Fn> {
//! Default constructor
constexpr equeue () noexcept : base_type() { }
//! fill contructor
constexpr equeue(const Data_t& value) noexcept : base_type(value) { }
//! Initializer list contructor
//! Forward constructor
template <typename ...It>
constexpr equeue(It&& ...it) noexcept : base_type(std::forward<It>(it)...) { }
@ -125,16 +126,17 @@ class equeue : public edeque<Data_t, N, Fn> {
*
* This definition enables the "data << equeue" syntax for pop operation
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of queue
* \tparam Fn The type of Callable
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of queue
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
* \tparam Fn The type of Callable
*
* \param it The item to write to
* \param q The queue to read from
* \return Reference to the returned item
*/
template <typename Data_t, size_t N, typename Fn = std::function<void()>>
Data_t& operator<< (Data_t& it, equeue<Data_t, N, Fn>& q) {
template <typename Data_t, size_t N, bool SemiAtomic =false, typename Fn = std::function<void()>>
Data_t& operator<< (Data_t& it, equeue<Data_t, N, SemiAtomic, Fn>& q) {
it = q.pop();
return it;
}

View File

@ -48,15 +48,19 @@ namespace tbx {
*
* We also provide stream operators.
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of queue
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of queue
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
* \note
* SemiAtomic means it is safe to for one thread to push only from front and another can pop.
*/
template <typename Data_t, size_t N>
class queue : public deque<Data_t, N> {
template <typename Data_t, size_t N, bool SemiAtomic =false>
class queue : public deque<Data_t, N, SemiAtomic> {
public:
// meta-identity types
using queue_t = queue<Data_t, N>;
using base_type = deque<Data_t, N>;
using queue_t = queue<Data_t, N, SemiAtomic>;
using base_type = deque<Data_t, N, SemiAtomic>;
using range_t = typename base_type::range_t;
// STL
using value_type = typename base_type::value_type;
@ -121,15 +125,16 @@ class queue : public deque<Data_t, N> {
*
* This definition enables the "data << queue" syntax for pop operation
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of queue
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of queue
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
*
* \param it The item to write to
* \param q The queue to read from
* \return Reference to the returned item
*/
template <typename Data_t, size_t N>
constexpr Data_t& operator<< (Data_t& it, queue<Data_t, N>& q) {
template <typename Data_t, size_t N, bool SemiAtomic =false>
constexpr Data_t& operator<< (Data_t& it, queue<Data_t, N, SemiAtomic>& q) {
it = q.pop();
return it;
}

64
include/cont/range.h Normal file
View File

@ -0,0 +1,64 @@
/*!
* \file cont/range.h
* \brief
* A plain definition of a range struct with agregate initialization
* and begin-end pairs.
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef TBX_CONT_RANGE_H_
#define TBX_CONT_RANGE_H_
#include <core/core.h>
namespace tbx {
/*!
* \brief
* A plain definition of a range struct with begin-end pairs.
*
* \tparam Iter_t The iterator type of the range
*/
template <typename Iter_t>
struct range {
Iter_t b{}, e{};
// range () = default;
// range (const Iter_t& first, const Iter_t& last) noexcept :
// b(first), e(last) { }
// range (Iter_t first, Iter_t last) noexcept :
// b(first), e(last) { }
Iter_t begin() { return b; }
const Iter_t begin() const { return b; }
const Iter_t cbegin() const { return b; }
Iter_t end() { return e; }
const Iter_t end() const { return e; }
const Iter_t cend() const { return e; }
};
}
#endif /* TBX_CONT_RANGE_H_ */

607
include/cont/span.h Normal file
View File

@ -0,0 +1,607 @@
/*
* This is an implementation of C++20's std::span
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4820.pdf
*/
// Copyright Tristan Brindle 2018.
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
#ifndef TBX_CONT_SPAN_H_
#define TBX_CONT_SPAN_H_
#include <array>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#ifndef TBX_SPAN_NO_EXCEPTIONS
// Attempt to discover whether we're being compiled with exception support
#if !(defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND))
#define TBX_SPAN_NO_EXCEPTIONS
#endif
#endif
#ifndef TBX_SPAN_NO_EXCEPTIONS
#include <cstdio>
#include <stdexcept>
#endif
// Various feature test macros
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define TBX_SPAN_HAVE_CPP17
#endif
#if __cplusplus >= 201402L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201402L)
#define TBX_SPAN_HAVE_CPP14
#endif
namespace tbx {
// Establish default contract checking behavior
#if !defined(TBX_SPAN_THROW_ON_CONTRACT_VIOLATION) && \
!defined(TBX_SPAN_TERMINATE_ON_CONTRACT_VIOLATION) && \
!defined(TBX_SPAN_NO_CONTRACT_CHECKING)
#if defined(NDEBUG) || !defined(TBX_SPAN_HAVE_CPP14)
#define TBX_SPAN_NO_CONTRACT_CHECKING
#else
#define TBX_SPAN_TERMINATE_ON_CONTRACT_VIOLATION
#endif
#endif
#if defined(TBX_SPAN_THROW_ON_CONTRACT_VIOLATION)
struct contract_violation_error : std::logic_error {
explicit contract_violation_error(const char* msg) : std::logic_error(msg)
{}
};
inline void contract_violation(const char* msg)
{
throw contract_violation_error(msg);
}
#elif defined(TBX_SPAN_TERMINATE_ON_CONTRACT_VIOLATION)
[[noreturn]] inline void contract_violation(const char* /*unused*/)
{
std::terminate();
}
#endif
#if !defined(TBX_SPAN_NO_CONTRACT_CHECKING)
#define TBX_SPAN_STRINGIFY(cond) #cond
#define TBX_SPAN_EXPECT(cond) \
cond ? (void) 0 : contract_violation("Expected " TBX_SPAN_STRINGIFY(cond))
#else
#define TBX_SPAN_EXPECT(cond)
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_inline_variables)
#define TBX_SPAN_INLINE_VAR inline
#else
#define TBX_SPAN_INLINE_VAR
#endif
#if defined(TBX_SPAN_HAVE_CPP14) || \
(defined(__cpp_constexpr) && __cpp_constexpr >= 201304)
#define TBX_SPAN_HAVE_CPP14_CONSTEXPR
#endif
#if defined(TBX_SPAN_HAVE_CPP14_CONSTEXPR)
#define TBX_SPAN_CONSTEXPR14 constexpr
#else
#define TBX_SPAN_CONSTEXPR14
#endif
#if defined(TBX_SPAN_HAVE_CPP14_CONSTEXPR) && \
(!defined(_MSC_VER) || _MSC_VER > 1900)
#define TBX_SPAN_CONSTEXPR_ASSIGN constexpr
#else
#define TBX_SPAN_CONSTEXPR_ASSIGN
#endif
#if defined(TBX_SPAN_NO_CONTRACT_CHECKING)
#define TBX_SPAN_CONSTEXPR11 constexpr
#else
#define TBX_SPAN_CONSTEXPR11 TBX_SPAN_CONSTEXPR14
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_deduction_guides)
#define TBX_SPAN_HAVE_DEDUCTION_GUIDES
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_lib_byte)
#define TBX_SPAN_HAVE_STD_BYTE
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_lib_array_constexpr)
#define TBX_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC
#endif
#if defined(TBX_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC)
#define TBX_SPAN_ARRAY_CONSTEXPR constexpr
#else
#define TBX_SPAN_ARRAY_CONSTEXPR
#endif
#ifdef TBX_SPAN_HAVE_STD_BYTE
using byte = std::byte;
#else
using byte = unsigned char;
#endif
#if defined(TBX_SPAN_HAVE_CPP17)
#define TBX_SPAN_NODISCARD [[nodiscard]]
#else
#define TBX_SPAN_NODISCARD
#endif
TBX_SPAN_INLINE_VAR constexpr std::size_t dynamic_extent = SIZE_MAX;
template <typename ElementType, std::size_t Extent = dynamic_extent>
class span;
namespace detail {
template <typename E, std::size_t S>
struct span_storage {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t /*unused*/) noexcept
: ptr(p_ptr)
{}
E* ptr = nullptr;
static constexpr std::size_t size = S;
};
template <typename E>
struct span_storage<E, dynamic_extent> {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t p_size) noexcept
: ptr(p_ptr), size(p_size)
{}
E* ptr = nullptr;
std::size_t size = 0;
};
// Reimplementation of C++17 std::size() and std::data()
#if defined(TBX_SPAN_HAVE_CPP17) || \
defined(__cpp_lib_nonmember_container_access)
using std::data;
using std::size;
#else
template <class C>
constexpr auto size(const C& c) -> decltype(c.size())
{
return c.size();
}
template <class T, std::size_t N>
constexpr std::size_t size(const T (&)[N]) noexcept
{
return N;
}
template <class C>
constexpr auto data(C& c) -> decltype(c.data())
{
return c.data();
}
template <class C>
constexpr auto data(const C& c) -> decltype(c.data())
{
return c.data();
}
template <class T, std::size_t N>
constexpr T* data(T (&array)[N]) noexcept
{
return array;
}
template <class E>
constexpr const E* data(std::initializer_list<E> il) noexcept
{
return il.begin();
}
#endif // TBX_SPAN_HAVE_CPP17
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_lib_void_t)
using std::void_t;
#else
template <typename...>
using void_t = void;
#endif
template <typename T>
using uncvref_t =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
template <typename>
struct is_span : std::false_type {};
template <typename T, std::size_t S>
struct is_span<span<T, S>> : std::true_type {};
template <typename>
struct is_std_array : std::false_type {};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename, typename = void>
struct has_size_and_data : std::false_type {};
template <typename T>
struct has_size_and_data<T, void_t<decltype(detail::size(std::declval<T>())),
decltype(detail::data(std::declval<T>()))>>
: std::true_type {};
template <typename C, typename U = uncvref_t<C>>
struct is_container {
static constexpr bool value =
!is_span<U>::value && !is_std_array<U>::value &&
!std::is_array<U>::value && has_size_and_data<C>::value;
};
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename, typename, typename = void>
struct is_container_element_type_compatible : std::false_type {};
template <typename T, typename E>
struct is_container_element_type_compatible<
T, E,
typename std::enable_if<
!std::is_same<typename std::remove_cv<decltype(
detail::data(std::declval<T>()))>::type,
void>::value>::type>
: std::is_convertible<
remove_pointer_t<decltype(detail::data(std::declval<T>()))> (*)[],
E (*)[]> {};
template <typename, typename = size_t>
struct is_complete : std::false_type {};
template <typename T>
struct is_complete<T, decltype(sizeof(T))> : std::true_type {};
} // namespace detail
template <typename ElementType, std::size_t Extent>
class span {
static_assert(std::is_object<ElementType>::value,
"A span's ElementType must be an object type (not a "
"reference type or void)");
static_assert(detail::is_complete<ElementType>::value,
"A span's ElementType must be a complete type (not a forward "
"declaration)");
static_assert(!std::is_abstract<ElementType>::value,
"A span's ElementType cannot be an abstract class type");
using storage_type = detail::span_storage<ElementType, Extent>;
public:
// constants and types
using element_type = ElementType;
using value_type = typename std::remove_cv<ElementType>::type;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_type extent = Extent;
// [span.cons], span constructors, copy, assignment, and destructor
template <
std::size_t E = Extent,
typename std::enable_if<(E == dynamic_extent || E <= 0), int>::type = 0>
constexpr span() noexcept
{}
TBX_SPAN_CONSTEXPR11 span(pointer ptr, size_type count)
: storage_(ptr, count)
{
TBX_SPAN_EXPECT(extent == dynamic_extent || count == extent);
}
TBX_SPAN_CONSTEXPR11 span(pointer first_elem, pointer last_elem)
: storage_(first_elem, last_elem - first_elem)
{
TBX_SPAN_EXPECT(extent == dynamic_extent ||
last_elem - first_elem ==
static_cast<std::ptrdiff_t>(extent));
}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
element_type (&)[N], ElementType>::value,
int>::type = 0>
constexpr span(element_type (&arr)[N]) noexcept : storage_(arr, N)
{}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
std::array<value_type, N>&, ElementType>::value,
int>::type = 0>
TBX_SPAN_ARRAY_CONSTEXPR span(std::array<value_type, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
const std::array<value_type, N>&, ElementType>::value,
int>::type = 0>
TBX_SPAN_ARRAY_CONSTEXPR span(const std::array<value_type, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
Container&, ElementType>::value,
int>::type = 0>
constexpr span(Container& cont)
// : storage_(detail::data(cont), detail::size(cont))
: storage_(cont.data(), cont.size())
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
const Container&, ElementType>::value,
int>::type = 0>
constexpr span(const Container& cont)
: storage_(detail::data(cont), detail::size(cont))
{}
constexpr span(const span& other) noexcept = default;
template <typename OtherElementType, std::size_t OtherExtent,
typename std::enable_if<
(Extent == OtherExtent || Extent == dynamic_extent) &&
std::is_convertible<OtherElementType (*)[],
ElementType (*)[]>::value,
int>::type = 0>
constexpr span(const span<OtherElementType, OtherExtent>& other) noexcept
: storage_(other.data(), other.size())
{}
~span() noexcept = default;
TBX_SPAN_CONSTEXPR_ASSIGN span&
operator=(const span& other) noexcept = default;
// [span.sub], span subviews
template <std::size_t Count>
TBX_SPAN_CONSTEXPR11 span<element_type, Count> first() const
{
TBX_SPAN_EXPECT(Count <= size());
return {data(), Count};
}
template <std::size_t Count>
TBX_SPAN_CONSTEXPR11 span<element_type, Count> last() const
{
TBX_SPAN_EXPECT(Count <= size());
return {data() + (size() - Count), Count};
}
template <std::size_t Offset, std::size_t Count = dynamic_extent>
using subspan_return_t =
span<ElementType, Count != dynamic_extent
? Count
: (Extent != dynamic_extent ? Extent - Offset
: dynamic_extent)>;
template <std::size_t Offset, std::size_t Count = dynamic_extent>
TBX_SPAN_CONSTEXPR11 subspan_return_t<Offset, Count> subspan() const
{
TBX_SPAN_EXPECT(Offset <= size() &&
(Count == dynamic_extent || Offset + Count <= size()));
return {data() + Offset,
Count != dynamic_extent ? Count : size() - Offset};
}
TBX_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
first(size_type count) const
{
TBX_SPAN_EXPECT(count <= size());
return {data(), count};
}
TBX_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
last(size_type count) const
{
TBX_SPAN_EXPECT(count <= size());
return {data() + (size() - count), count};
}
TBX_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
subspan(size_type offset, size_type count = dynamic_extent) const
{
TBX_SPAN_EXPECT(offset <= size() &&
(count == dynamic_extent || offset + count <= size()));
return {data() + offset,
count == dynamic_extent ? size() - offset : count};
}
// [span.obs], span observers
constexpr size_type size() const noexcept { return storage_.size; }
constexpr size_type size_bytes() const noexcept
{
return size() * sizeof(element_type);
}
TBX_SPAN_NODISCARD constexpr bool empty() const noexcept
{
return size() == 0;
}
// [span.elem], span element access
TBX_SPAN_CONSTEXPR11 reference operator[](size_type idx) const
{
TBX_SPAN_EXPECT(idx < size());
return *(data() + idx);
}
TBX_SPAN_CONSTEXPR11 reference front() const
{
TBX_SPAN_EXPECT(!empty());
return *data();
}
TBX_SPAN_CONSTEXPR11 reference back() const
{
TBX_SPAN_EXPECT(!empty());
return *(data() + (size() - 1));
}
constexpr pointer data() const noexcept { return storage_.ptr; }
// [span.iterators], span iterator support
constexpr iterator begin() const noexcept { return data(); }
constexpr iterator end() const noexcept { return data() + size(); }
TBX_SPAN_ARRAY_CONSTEXPR reverse_iterator rbegin() const noexcept
{
return reverse_iterator(end());
}
TBX_SPAN_ARRAY_CONSTEXPR reverse_iterator rend() const noexcept
{
return reverse_iterator(begin());
}
private:
storage_type storage_{};
};
#ifdef TBX_SPAN_HAVE_DEDUCTION_GUIDES
/* Deduction Guides */
template <class T, size_t N>
span(T (&)[N])->span<T, N>;
template <class T, size_t N>
span(std::array<T, N>&)->span<T, N>;
template <class T, size_t N>
span(const std::array<T, N>&)->span<const T, N>;
template <class Container>
span(Container&)->span<typename Container::value_type>;
template <class Container>
span(const Container&)->span<const typename Container::value_type>;
#endif // TCB_HAVE_DEDUCTION_GUIDES
template <typename ElementType, std::size_t Extent>
constexpr span<ElementType, Extent>
make_span(span<ElementType, Extent> s) noexcept
{
return s;
}
template <typename T, std::size_t N>
constexpr span<T, N> make_span(T (&arr)[N]) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TBX_SPAN_ARRAY_CONSTEXPR span<T, N> make_span(std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TBX_SPAN_ARRAY_CONSTEXPR span<const T, N>
make_span(const std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename Container>
constexpr span<typename Container::value_type> make_span(Container& cont)
{
return {cont};
}
template <typename Container>
constexpr span<const typename Container::value_type>
make_span(const Container& cont)
{
return {cont};
}
template <typename ElementType, std::size_t Extent>
span<const byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <
class ElementType, size_t Extent,
typename std::enable_if<!std::is_const<ElementType>::value, int>::type = 0>
span<byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_writable_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
template <std::size_t N, typename E, std::size_t S>
constexpr auto get(span<E, S> s) -> decltype(s[N])
{
return s[N];
}
} // namespace tbx
namespace std {
template <typename ElementType, size_t Extent>
class tuple_size<tbx::span<ElementType, Extent>>
: public integral_constant<size_t, Extent> {};
template <typename ElementType>
class tuple_size<tbx::span<
ElementType, tbx::dynamic_extent>>; // not defined
template <size_t I, typename ElementType, size_t Extent>
class tuple_element<I, tbx::span<ElementType, Extent>> {
public:
static_assert(Extent != tbx::dynamic_extent &&
I < Extent,
"");
using type = ElementType;
};
} // end namespace std
#endif // TBX_CONT_SPAN_H_

View File

@ -35,10 +35,11 @@
#include <iterator>
#include <type_traits>
#include <atomic>
namespace tbx {
template<typename Iter_t, size_t N>
template<typename Iter_t, size_t N, bool Atomic=false>
class ring_iterator {
//! \name STL iterator traits "forwarding"
//! @{
@ -164,6 +165,9 @@ class ring_iterator {
return N;
}
constexpr operator Iter_t() noexcept { return iter_; }
constexpr operator const Iter_t() const noexcept { return iter_; }
protected:
Iter_t base_;
Iter_t iter_;
@ -226,6 +230,214 @@ noexcept {
}
template<typename Iter_t, size_t N>
class ring_iterator<Iter_t, N, true> {
//! \name STL iterator traits "forwarding"
//! @{
protected:
using traits_type = std::iterator_traits<Iter_t>;
public:
using iterator_type = Iter_t;
using iterator_category = typename traits_type::iterator_category;
using value_type = typename traits_type::value_type;
using difference_type = typename traits_type::difference_type;
using reference = typename traits_type::reference;
using pointer = typename traits_type::pointer;
//! @}
//! \name Constructor / Destructor
//! @{
public:
constexpr ring_iterator(const Iter_t base =nullptr) noexcept :
base_(base), iter_(base) { }
constexpr ring_iterator(const Iter_t base, size_t elem) noexcept :
base_(base), iter_(base + elem) { }
constexpr ring_iterator(const ring_iterator& it) noexcept :
base_(it.base_) {
iter_ = it.iter_.load(std::memory_order_acquire);
}
constexpr ring_iterator& operator= (const ring_iterator& it) noexcept {
base_ = it.base_;
iter_ = it.iter_.load(std::memory_order_acquire);
return *this;
}
//! @}
//! \name Forward iterator requirements
//! @{
public:
constexpr reference operator*() const noexcept {
return *iter_.load(std::memory_order_acquire);
}
constexpr pointer operator->() const noexcept {
return iter_.load(std::memory_order_acquire);
}
constexpr ring_iterator& operator++() noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (static_cast<size_t>(++itnew - base_) >= N)
itnew = base_;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return *this;
}
constexpr ring_iterator operator++(int) noexcept {
ring_iterator it = *this;
this->operator ++();
return it;
}
//! @}
//! \name Bidirectional iterator requirements
//! @{
public:
constexpr ring_iterator& operator--() noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (--itnew < base_)
itnew = base_ + N -1;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return *this;
}
constexpr ring_iterator operator--(int) noexcept {
ring_iterator it = *this;
this->operator --();
return it;
}
//! @}
//! \name Random access iterator requirements
//! @{
constexpr reference operator[](difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
base_[k + n] : // on range
base_[k + n - N]; // out of range, loop
}
constexpr ring_iterator& operator+=(difference_type n) noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
difference_type k = it - base_; // ptrdiff from base_
itnew += (static_cast<size_t>(k + n) < N) ?
n : // on range
n - N; // out of range, loop
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acquire));
return *this;
}
constexpr ring_iterator operator+(difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
ring_iterator(base_, k + n) : // on range
ring_iterator(base_, k + n - N); // out of range, loop
}
constexpr ring_iterator& operator-=(difference_type n) noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
difference_type k = it - base_; // ptrdiff from base_
itnew -= ((k - n) < 0)?
n - N: // out of range, loop
n; // on range
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acquire));
return *this;
}
constexpr ring_iterator operator-(difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return ((k - n) < 0) ?
ring_iterator(base_, k - n + N) : // out of range, loop
ring_iterator(base_, k - n); // on range
}
//! @}
//! \name Data members and access
//! @{
constexpr const Iter_t& base() const noexcept {
return base_;
}
constexpr const Iter_t iter() const noexcept {
return iter_.load(std::memory_order_acquire);
}
constexpr size_t size() noexcept {
return N;
}
constexpr operator Iter_t() noexcept { return iter_.load(std::memory_order_acquire); }
constexpr operator const Iter_t() const noexcept { return iter_.load(std::memory_order_acquire); }
protected:
Iter_t base_;
std::atomic<Iter_t> iter_;
//! @}
};
// Forward iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator==(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() == rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator!=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() != rhs.iter();
}
// Random access iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() < rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() <= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() > rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() >= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline auto operator-(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept
-> decltype(lhs.iter() - rhs.iter()) {
auto diff = lhs.iter() - rhs.iter();
return diff < 0 ?
diff + N : // loop
diff; // no loop
}
template<typename Iter, size_t N>
inline ring_iterator<Iter, N, true> operator+(std::ptrdiff_t lhs, const ring_iterator<Iter, N, true>& rhs)
noexcept {
ring_iterator<Iter, N, true> it(rhs.iter());
return it += lhs;
}
} //namespace tbx;
#endif /* TBX_CORE_RING_ITERATOR_H_ */

321
include/drv/BG95_base.h Normal file
View File

@ -0,0 +1,321 @@
/*!
* \file cont/BG95_base.h
* \brief
* BG95 driver functionality as CRTP base class
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef TBX_DRV_BG95_base_H_
#define TBX_DRV_BG95_base_H_
#include <core/core.h>
#include <core/crtp.h>
#include <cont/equeue.h>
#include <cont/range.h>
#include <utils/sequencer.h>
#include <cstring>
#include <cstdio>
#include <algorithm>
//#include <iostream>
#include <atomic>
namespace tbx {
/*!
* \class BG95_base
* \brief
*
* \example implementation example
* \code
* using Queue = equeue<char, 512, true>;
*
* class BG95 :
* public BG95_base<BG95, Queue, 256> {
* using base_type = BG95_base<BG95, Queue, 256>;
* using range_t = typename Queue::range_t;
* private: // data
* Queue rx_q{};
* std::atomic<size_t> lines{};
* public:
* BG95() :
* rx_q(equeue<char, 512, true>::data_match::MATCH_PUSH, base_type::delimiter, [&](){
* lines.fetch_add(1, std::memory_order_acq_rel);
* }), lines(0) {
* // init code here ...
* }
* // ISR handler
* void usart_isr_ (void) {
* rx_q << // char from ISR
* }
* // CRTP requirements
* size_t get(char* data, bool wait =false) {
* do {
* if (lines.load(std::memory_order_acquire)) {
* size_t n =0;
* do{
* *data << rx_q;
* ++n;
* } while (*data++ != base_type::delimiter);
* lines.fetch_sub(1, std::memory_order_acq_rel);
* return n;
* }
* } while (wait);
* return 0;
* }
* size_t put (const char* data, size_t n) {
* // send data to UART
* return n;
* }
* const range_t contents() const { return range_t {rx_q.begin(), rx_q.end()}; }
* clock_t clock() { } // return systems CPU time
* };
* \endcode
*
* \tparam Impl_t
* \tparam Cont_t
* \tparam N
* \tparam Delimiter
*/
template<typename Impl_t, typename Cont_t, size_t N, char Delimiter ='\n'>
class BG95_base
: public sequencer<BG95_base<Impl_t, Cont_t, N, Delimiter>, Cont_t, char, N>{
_CRTP_IMPL(Impl_t);
static_assert(
std::is_same_v<typename Cont_t::value_type, char>,
"Cont_t must be a container of type char"
);
// local type dispatch
using base_type = sequencer<BG95_base, Cont_t, char, N>;
using str_view_t = typename base_type::str_view_t;
using range_t = typename Cont_t::range_t;
using status_t = typename base_type::status_t;
//! \name Public types
//! @{
public:
using action_t = typename base_type::action_t;
using control_t = typename base_type::control_t;
using match_t = typename base_type::match_t;
using handler_t = typename base_type::handler_ft;
template<size_t Nr, size_t Nh =2>
using script_t = typename base_type::template script_t<Nr, Nh>;
//! Publish delimiter
constexpr static char delimiter = Delimiter;
//! Required typenames for async operation
//! @{
template <size_t Nm>
using async_handlers = std::array<typename base_type::handle_t, Nm>;
//! @}
//! @}
//! \name Constructor / Destructor
//!@{
protected:
//!< \brief A default constructor from derived only
BG95_base() = default;
~BG95_base () = default; //!< \brief Allow destructor from derived only
BG95_base(const BG95_base&) = delete; //!< No copies
BG95_base& operator= (const BG95_base&) = delete; //!< No copy assignments
//!@}
//! \name Sequencer interface requirements
//! Forwarded to implementer the calls and cascade the the incoming channel
//! sequencer::get --resolved--> this->receive() --calls--> impl().get()
//! @{
friend base_type;
private:
size_t get_ (char* data) {
return impl().get (data);
}
size_t get (char* data) {
return receive (data);
}
size_t put (const char* data, size_t n) {
return impl().put (data, n);
}
const range_t contents () const {
return impl().contents();
}
clock_t clock () {
return impl().clock();
}
//! @}
//! \name Private functionality
//! @{
private:
//! @}
//! \name public functionality
//! @{
public:
/*!
* \brief
* Transmit data to modem
* \param data Pointer to data to send
* \param n The size of data buffer
* \return The number of transmitted chars
*/
size_t transmit (const char* data, size_t n) {
return put (data, n);
}
size_t transmit (const char* data) {
return put (data, strlen(data));
}
/*!
* \brief
* Try to receive data from modem. If there are data copy them to \c data pointer and retur
* the size. Otherwise return zero. In the case \c wait is true block until there are data to get.
*
* \param data Pointer to data buffer to write
* \param wait Flag to select blocking / non-blocking functionality
* \return The number of copied data.
*/
size_t receive (char* data, bool wait =false) {
do {
if (streams_.load(std::memory_order_acquire)) {
size_t n =0;
do {
*data << rx_q;
++n;
} while (*data++ != delimiter);
*data =0;
streams_.fetch_sub(1, std::memory_order_acq_rel);
return n;
}
} while (wait); // on wait flag we block until available stream
return 0;
}
/*!
* \brief
* inetd daemon functionality provided as member function of the driver. This should be running
* in the background either as consecutive calls from an periodic ISR with \c loop = false, or
* as a thread in an RTOS environment with \c loop = true.
*
* \tparam Nm The number of handler array entries
*
* \param async_handles Reference to asynchronous handler array
* \param loop Flag to indicate blocking mode. If true blocking.
*/
template <size_t Nm =0>
void inetd (bool loop =true, const async_handlers<Nm>* async_handles =nullptr) {
std::array<char, N> buffer;
size_t resp_size;
do {
if ((resp_size = get_(buffer.data())) != 0) {
// on data check for async handlers
bool match = false;
if (async_handles != nullptr) {
for (auto& h : *async_handles)
match |= base_type::check_handle (h, buffer.data());
}
// if no match forward data to receive channel.
if (!match) {
char* it = buffer.data();
do {
rx_q << *it;
} while (*it++ != delimiter);
streams_.fetch_add(1, std::memory_order_acq_rel);
}
}
} while (loop);
}
template <size_t Steps, size_t Nhandles>
bool configure (const script_t<Steps, Nhandles>& script) {
return base_type::run (script);
}
// // General API
// static constexpr typename base_type::handle_t error_handle_ = {
// "ERROR", match_t::CONTAINS, nullptr, action_t::EXIT_ERROR, 0
// };
template<typename T>
void parse (char* str, size_t n, char next, T value) {
auto next_ptr = std::find(str, &str[n], next);
char save = *next_ptr;
*next_ptr =0;
if constexpr (std::is_same_v<std::remove_cv<T>, int>) {
sscanf(str, "%d", &value);
} else if (std::is_same_v<std::remove_cv<T>, float>) {
sscanf(str, "%f", &value);
} else if (std::is_same_v<std::remove_cv<T>, double>) {
sscanf(str, "%lf", &value);
} else if (std::is_same_v<std::remove_cv<T>, char>) {
sscanf(str, "%c", &value);
} else if (std::is_same_v<std::remove_cv<T>, char*>) {
strcpy(value, str);
}
*next_ptr = save;
}
// cmd: "AT+CREG?"
// expected: "\r\n+CREG: 0,%\r\nOK\r\n"
template <typename T, char Marker = '%'>
bool command (const str_view_t cmd, const str_view_t expected, T& t) {
char buffer[N];
transmit(cmd);
for (size_t pos =0 ; pos < expected.size(); ) {
str_view_t ex = expected.substr(pos); // get starting point of expected
size_t sz = receive(buffer, 1); // load the answer
for (size_t i ; i<sz ; ) {
if (ex[i] == Marker)
parse(buffer[i], sz, ex[i+1], t); // parse and convert
else if (ex[i] == buffer[i])
++i; // consume current character
else
return false; // Fail to parse
}
}
return true;
}
//! @}
private:
equeue<char, N> rx_q{};
std::atomic<size_t> streams_{};
};
} // namespace tbx;
#endif /* TBX_DRV_BG95_base_H_ */

View File

@ -34,14 +34,19 @@
#include <core/core.h>
#include <core/crtp.h>
#include <cont/range.h>
#include <ctime>
#include <array>
#include <string_view>
#include <limits>
#include <type_traits>
#include <functional>
namespace tbx {
/*!
* \class sequencer_t
* \class sequencer
* \brief
* A CRTP base class to provide the sequencer functionality.
*
@ -59,14 +64,26 @@ namespace tbx {
* match the units in \c record_t::timeout field.
*
* \tparam Impl_t The type of derived class
* \tparam Cont_t The container type holding the data of type \c Data_t for the derived class.
* \tparam Data_t The char-like stream item type. Usually \c char
* \tparam N The size of the sequence buffer to temporary store each line from get().
*
* \note
* We need access to derived class container to sneaky get a range of the data beside
* the normal data flow, in order to implement the \see control_t::DETECT operation.
*/
template <typename Impl_t, typename Data_t, size_t N>
class sequencer_t {
template <typename Impl_t, typename Cont_t, typename Data_t, size_t N>
class sequencer {
_CRTP_IMPL(Impl_t);
using str_view_t = std::basic_string_view<Data_t>;
static_assert(
std::is_same_v<typename Cont_t::value_type, Data_t>,
"Cont_t must be a container of type Data_t"
);
// local type dispatch
using str_view_t = std::basic_string_view<Data_t>;
using range_t = typename Cont_t::range_t;
//! \name Public types
//! @{
@ -88,8 +105,18 @@ class sequencer_t {
//! \brief The control type of the script entry.
enum class control_t {
NOP, //!< No command, dont send or expect anything, used for delays
SEND, //!< Send data to implementation
EXPECT //!< Expects data from implementation
SEND, //!< Send data to implementation through put()
EXPECT, //!< Expects data from implementation via get()
DETECT //!< Detects data into rx buffer without receiving them via contents()
//! \note
//! The \c DETECT extra incoming channel serve the purpose of sneak into receive
//! buffer and check for data without getting them. This is useful when the receive driver
//! is buffered with a delimiter and we seek for data that don't follow the delimiter pattern.
//!
//! For example:
//! A modem sends reponses with '\n' termination but for some "special" command it opens a cursor
//! lets say ">$ " without '\n' at the end.
};
//! \enum match_t
@ -102,18 +129,18 @@ class sequencer_t {
* Match handler function pointer type.
* Expects a pointer to buffer and a size and returns status
*/
using handler_ft = status_t (*) (const Data_t*, size_t);
using handler_ft = void (*) (const Data_t*, size_t);
/*!
* \struct block_t
* \struct handle_t
* \brief
* The script line block.
* The script record handle block.
*
* Each script "line" contains up to 2 blocks for matching functionality. Each block
* Each script record contains some blocks for matching functionality. Each block
* has a token and a matching type. If the response matches the token, the sequencer calls
* the handler and perform the action.
*/
struct block_t {
struct handle_t {
std::basic_string_view<Data_t>
token; //!< The token for the match
match_t match_type; //!< The matching type functionality
@ -129,6 +156,19 @@ class sequencer_t {
*
* Each line consist from a control, 2 blocks and a timeout. The control says if we send or receive data.
* The blocks contain the data and the matching information. And the timeout guards the entire line.
*/
template<size_t Nhandles =2>
struct record_t {
control_t control; //!< The type of the entry
std::array<handle_t, Nhandles>
block; //!< The matching blocks
clock_t timeout; //!< Timeout in CPU time
};
/*!
* \struct script_t
* \brief
* Describes the sequencer's script.
*
* The user can create arrays as the example bellow to act as a script.
* \code
@ -144,11 +184,8 @@ class sequencer_t {
* }};
* \endcode
*/
struct record_t {
control_t control; //!< The type of the entry
std::array<block_t, 2> block; //!< The matching block
clock_t timeout; //!< Timeout in CPU time
};
template <size_t Nrecords, size_t Nhandles =2>
using script_t = std::array<record_t<Nhandles>, Nrecords>;
//! @}
@ -156,10 +193,10 @@ class sequencer_t {
//! \name Constructor / Destructor
//!@{
protected:
~sequencer_t () = default; //!< \brief Allow destructor from derived only
sequencer_t () = default; //!< \brief A default constructor from derived only
sequencer_t(const sequencer_t&) = delete; //!< No copies
sequencer_t& operator= (const sequencer_t&) = delete; //!< No copy assignments
~sequencer () = default; //!< \brief Allow destructor from derived only
sequencer () = default; //!< \brief A default constructor from derived only
sequencer(const sequencer&) = delete; //!< No copies
sequencer& operator= (const sequencer&) = delete; //!< No copy assignments
//!@}
//! \name Sequencer interface requirements for implementer
@ -167,6 +204,7 @@ class sequencer_t {
private:
size_t get_ (Data_t* data) { return impl().get (data); }
size_t put_ (const Data_t* data, size_t n) { return impl().put (data, n); }
const range_t contents_ () const { return impl().contents(); }
clock_t clock_ () { return impl().clock(); }
//! @}
@ -180,7 +218,7 @@ class sequencer_t {
* \param prefix What we search
* \return True on success, false otherwise
*/
bool starts_with_ (const str_view_t stream, const str_view_t prefix) {
static bool starts_with_ (const str_view_t stream, const str_view_t prefix) {
return (stream.rfind(prefix, 0) != str_view_t::npos);
}
@ -191,7 +229,9 @@ class sequencer_t {
* \param postfix What we search
* \return True on success, false otherwise
*/
bool ends_with_ (const str_view_t stream, const str_view_t postfix) {
static bool ends_with_ (const str_view_t stream, const str_view_t postfix) {
if (stream.size() < postfix.size())
return false;
return (
stream.compare(
stream.size() - postfix.size(),
@ -207,7 +247,7 @@ class sequencer_t {
* \param needle What we search
* \return True on success, false otherwise
*/
bool contains_ (const str_view_t haystack, const str_view_t needle) {
static bool contains_ (const str_view_t haystack, const str_view_t needle) {
return (haystack.find(needle) != str_view_t::npos);
}
/*!
@ -221,7 +261,7 @@ class sequencer_t {
* \param go_idx The new value of the step in the case of GOTO type
* \return The new sequencer's step value
*/
size_t step_ (size_t current_idx, action_t action, size_t go_idx =0) {
static size_t step_ (size_t current_idx, action_t action, size_t go_idx =0) {
switch (action) {
default:
case action_t::NO: return current_idx;
@ -232,6 +272,27 @@ class sequencer_t {
return 0;
}
}
static status_t action_ (size_t& step, const handle_t& block, const str_view_t buffer = str_view_t{}) {
if (block.handler != nullptr)
block.handler(buffer.begin(), buffer.size());
switch (block.action) {
case action_t::EXIT_OK:
step = std::numeric_limits<size_t>::max();
return status_t::OK;
case action_t::EXIT_ERROR:
step = std::numeric_limits<size_t>::max();
return status_t::ERROR;
default:
step = step_(step, block.action, block.idx);
return status_t::OK;
}
}
//! @}
public:
/*!
* \brief
* Checks if the \c needle matches the \c haystack.
@ -241,7 +302,7 @@ class sequencer_t {
* \param needle The stream we search
* \return True on match
*/
bool match_(match_t type, const str_view_t haystack, const str_view_t needle) {
static bool match (const str_view_t haystack, const str_view_t needle, match_t type) {
switch (type) {
default:
case match_t::NO: return true;
@ -253,10 +314,25 @@ class sequencer_t {
case match_t::nCONTAINS: return !contains_(haystack, needle);
}
}
//! @}
/*!
* \brief
* A static functionality to provide access to sequencer's inner matching mechanism.
* Checks the \c buffer against \c handle and calls its action if needed.
*
* \param handle Reference to handle
* \param buffer The buffer to check
* \return True on match, false otherwise
*/
static bool check_handle (const handle_t& handle, const str_view_t buffer) {
size_t tmp{};
if (match(buffer, handle.token, handle.match_type)) {
action_ (tmp, handle, buffer);
return true;
}
return false;
}
public:
/*!
* \brief
* Run the script array
@ -264,28 +340,38 @@ class sequencer_t {
* The main sequencer functionality. It starts with the first entry of the array.
* - If the entry is \c NOP it executes the action after the timeout.
* \c token and \c handler are discarded.
* - If the entry is \c SEND it uses the first block's token to send and executes the action after that.
* - If the entry is \c SEND it uses the first handle block's token to send and executes the action after that.
* \c timeout is discarded.
* - If the entry is \c EXCEPTS it continuously try to receive data using implementation's get until one
* of the blocks match.
* of the handle blocks match.
* On match:
* - Calls the handler if there is one
* - Executes the action
* - Skips the next block if there is one
* - Skips the next handle blocks if there is any.
* If there is no match on timeout it return status_t::EXIT_ERROR
* - If the entry is \c DETECT it continuously try to detect data using implementation's contents until one
* of the handle blocks match.
* On match:
* - Calls the handler if there is one
* - Executes the action
* - Skips the next handle blocks if there is any.
* If there is no match on timeout it return status_t::EXIT_ERROR
*
* \tparam Steps The number of steps of the script
* \tparam Nhandles The number of handle blocks in the each script record.
*
* \param script Reference to script to run
* \return The status of entire operation as described above
*/
template <size_t Steps>
status_t run (const std::array<record_t, Steps>& script) {
template <size_t Steps, size_t Nhandles>
bool run (const script_t<Steps, Nhandles>& script) {
Data_t buffer[N];
size_t resp_size;
size_t resp_size{};
status_t status{};
clock_t mark = clock_();
for (size_t step =0, p_step =0 ; step < Steps ; ) {
const record_t& it = script[step];
const record_t<Nhandles>& it = script[step];
if (step != p_step) {
p_step = step;
@ -294,64 +380,63 @@ class sequencer_t {
switch (it.control) {
default:
case control_t::NOP:
if ((clock_() - mark) >= it.timeout) {
switch (it.block[0].action) {
case action_t::EXIT_OK: return status_t::OK;
case action_t::EXIT_ERROR: return status_t::ERROR;
default:
step = step_(step, it.block[0].action, it.block[0].idx);
break;
}
}
if ((clock_() - mark) >= it.timeout)
status = action_ (step, it.block[0]);
break;
case control_t::SEND:
put_(it.block[0].token.data(), it.block[0].token.size());
switch (it.block[0].action) {
case action_t::EXIT_OK: return status_t::OK;
case action_t::EXIT_ERROR: return status_t::ERROR;
default:
step = step_(step, it.block[0].action, it.block[0].idx);
break;
}
if (put_(it.block[0].token.data(), it.block[0].token.size()) != it.block[0].token.size())
return false;
status = action_ (step, it.block[0]);
break;
case control_t::EXPECT:
resp_size = get_(buffer);
if (resp_size) {
for (auto& block : it.block) {
if (match_(block.match_type, buffer, block.token)) {
if (block.handler != nullptr)
block.handler(buffer, resp_size);
switch (block.action) {
case action_t::EXIT_OK: return status_t::OK;
case action_t::EXIT_ERROR: return status_t::ERROR;
default:
step = step_(step, block.action, block.idx);
break;
}
if (match(
{buffer, resp_size},
block.token,
block.match_type)) {
status = action_ (step, block, {buffer, resp_size});
break;
}
}
}
if ((clock_() - mark) >= it.timeout)
return status_t::ERROR;
if (it.timeout && (clock_() - mark) >= it.timeout)
return false;
break;
case control_t::DETECT:
auto data = contents_();
if (data.begin() != data.end()) {
for (auto& block : it.block) {
if (match(
{data.begin(), static_cast<size_t>(data.end() - data.begin())},
block.token,
block.match_type)) {
status = action_ (step, block, {buffer, resp_size});
break;
}
}
}
if (it.timeout && (clock_() - mark) >= it.timeout)
return false;
break;
} // switch (it.control)
}
return status_t::OK;
return (status == status_t::OK);
}
};
/*!
* An "empty" block for convenience.
*/
template <typename Impl_t, typename Data_t, size_t N>
constexpr typename sequencer_t<Impl_t, Data_t, N>::block_t Sequencer_null_block = {
template <typename Impl_t, typename Cont_t, typename Data_t, size_t N>
constexpr typename sequencer<Impl_t, Cont_t, Data_t, N>::handle_t Sequencer_null_block = {
"",
sequencer_t<Impl_t, Data_t, N>::match_t::NO,
sequencer<Impl_t, Cont_t, Data_t, N>::match_t::NO,
nullptr,
sequencer_t<Impl_t, Data_t, N>::action_t::NO,
sequencer<Impl_t, Cont_t, Data_t, N>::action_t::NO,
0
};

8
test/.gitignore vendored Normal file
View File

@ -0,0 +1,8 @@
# Binaries
bin/
# Eclipse related
/Debug/
.settings/
.project
.cproject

View File

@ -85,7 +85,9 @@ SRC_FILES_LIST :=
# Include directories list(space seperated). Relative path
INC_DIR_LIST := ../include gtest
ifeq ($(OS), Windows_NT)
INC_DIR_LIST += mingw-std-threads
endif
# Exclude files list(space seperated). Filenames only.
# EXC_FILE_LIST := bad.cpp old.cpp
@ -104,10 +106,13 @@ ODUMP := objdump
OCOPY := objcopy
# Compiler flags for debug and release
DEB_CFLAGS := -std=c++17 -DDEBUG -g3 -Wall -Wextra
REL_CFLAGS := -std=c++17 -Wall -Wextra -O2
DEB_CFLAGS := -std=gnu++17 -DDEBUG -g3 -Wall -Wextra -fmessage-length=0
REL_CFLAGS := -std=gnu++17 -g3 -Wall -Wextra -O2 -fmessage-length=0
# Pre-defines
# PRE_DEFS := MYCAB=1729 SUPER_MODE
PRE_DEFS :=
ifeq ($(OS), Windows_NT)
PRE_DEFS += WIN_TRHEADS
endif
# ============== Linker settings ==============
# Linker flags
@ -184,7 +189,7 @@ $(BUILD_DIR)/$(TARGET): $(OBJ)
@echo Linking to target: $(TARGET)
$(DOCKER) $(CXX) $(LDFLAGS) $(MAP_FLAG) -o $(@D)/$(TARGET) $(OBJ)
$(DOCKER) $(ODUMP) -h -S $(BUILD_DIR)/$(TARGET) > $(BUILD_DIR)/$(basename $(TARGET)).list
$(DOCKER) $(OCOPY) -O ihex $(BUILD_DIR)/$(TARGET) $(BUILD_DIR)/$(basename $(TARGET)).hex
# $(DOCKER) $(OCOPY) -O ihex $(BUILD_DIR)/$(TARGET) $(BUILD_DIR)/$(basename $(TARGET)).hex
@echo
@echo Print size information
@$(CSIZE) $(@D)/$(TARGET)
@ -217,8 +222,8 @@ build-clang: $(BUILD_DIR)/$(TARGET)
debug: $(BUILD_DIR)/$(TARGET)
.PHONY: release
release: CFLAGS := $(REL_FLAGS)
release: clean $(BUILD_DIR)/$(TARGET)
release: CFLAGS := $(REL_CFLAGS)
release: $(BUILD_DIR)/$(TARGET)
.PHONY: all
all: clean release

View File

@ -26,9 +26,191 @@
*
*/
#include <gtest/gtest.h>
#include <exception>
GTEST_API_ int main(int argc, char **argv) {
//#include <drv/BG95_base.h>
//#include <gtest/gtest.h>
//#include <cont/equeue.h>
////#include <map>
//
////#include <iostream>
//#include <cstring>
//#include <utility>
//
//#ifndef WIN_TRHEADS
//#include <mutex>
//#include <thread>
//#else
//#include <mingw.thread.h>
//#include <mingw.mutex.h>
//#endif
//
//using namespace tbx;
//
//using Q = equeue<char, 512, true>;
//
//// BG95 implementer mock
//class BG95 : public BG95_base<BG95, Q, 256> {
// using base_type = BG95_base<BG95, Q, 256>;
//
// public:
// enum class event {
// MQTT_DISCONNECT, MQTT_RXDATA
// };
// // simulated modem operation
// private:
// struct cmd_pair {
// const char *cmd;
// const char *resp;
// };
// struct event_pair {
// event e;
// const char* resp;
// };
//
// std::array<cmd_pair, 19> cmd_map = {{
// {"ERROR", "\r\nERROR\r\n"},
// {"ATE0\r\n", "\r\nATE0\r\nOK\r\n"},
// {"AT\r\n", "\r\nOK\r\n"},
// {"AT+QCFG=\"nwscanseq\"\r\n", "\r\n+QCFG: \"nwscanseq\",020301\r\n"},
// {"AT+QCFG=\"nwscanseq\",010302\r\n", "\r\nOK\r\n"},
// {"AT+CREG?\r\n", "\r\n+CREG: 0,5\r\n\r\nOK\r\n"},
// {"AT+CSQ\r\n", "\r\n+CSQ: 19,99\r\n\r\nOK\r\n"},
// {"AT+QNWINFO\r\n", "\r\n+QNWINFO: \"EDGE\",\"20201\",\"GSM 1800\",865\r\n\r\nOK\r\n"},
// // Files
// {"AT+QFLST\r\n", "\r\n+QFLST: \"cacert.pem\",1220\r\n+QFLST: \"security/\",2\r\nOK\r\n"},
// // MQTT config
// {"AT+QSSLCFG=\"ignorelocaltime\",2,1\r\n", "\r\nOK\r\n"},
// {"AT+QSSLCFG=\"seclevel\",2,1\r\n", "\r\nOK\r\n"},
// {"AT+QSSLCFG=\"sslversion\",2,4\r\n", "\r\nOK\r\n"},
// {"AT+QSSLCFG=\"ciphersuite\",2\r\n", "\r\n+QSSLCFG: \"ciphersuite\",2,0XFFFF\r\n\r\nOK\r\n"},
// {"AT+QMTCFG=\"ssl\",0,1,2\r\n", "\r\nOK\r\n"},
// {"AT+QMTCFG=\"keepalive\",0,3600\r\n", "\r\nOK\r\n"},
// // MQTT
// {"AT+QMTOPEN=0,\"server.com\",8883\r\n", "\r\nOK\r\n\r\n+QMTOPEN: 0,0\r\n"},
// {"AT+QMTCONN=0,\"myID\",\"user\",\"pass\"\r\n", "\r\nOK\r\n\r\n+QMTCONN: 0,0,0\r\n"},
// {"AT+QMTSUB=0,1,\"/path/topic1\",2\r\n", "\r\nOK\r\n\r\n+QMTSUB: 0,1,0,2\r\n"},
// {"AT+QMTPUB=0,0,0,0,\"/path/topic2\",9\r\n", "\r\n> \r\nOK\r\n\r\n+QMTPUB: 0,0,0\r\n"},
// }};
// std::array<event_pair, 2> event_map {{
// {event::MQTT_DISCONNECT, "\r\n+QMTSTAT: 0,1\r\n"},
// {event::MQTT_RXDATA, "\r\n+QMTRECV: 0,1,\"/path/topic1\",\"BR: hello to all of my subscribers\""}
// }};
// const char* cmd_responce (const char* cmd) {
// for (auto& it : cmd_map) {
// if (!strcmp(it.cmd, cmd))
// return it.resp;
// }
// return cmd_map[0].resp;
// }
// const char* event_responce (const event e) {
// for (auto& it : event_map) {
// if (e == it.e)
// return it.resp;
// }
// return nullptr; // non reachable
// }
//
// // data
// Q rx_q{};
// std::atomic<size_t> lines{};
// public:
// using range_t = typename Q::range_t;
//
// public:
// // BG95_base driver requirements
// BG95() :
// rx_q(Q::data_match::MATCH_PUSH, base_type::delimiter, [&](){
// lines.fetch_add(1, std::memory_order_acq_rel);
// }), lines(0) { }
//
// size_t get(char* data, bool wait =false) {
// do {
// if (lines.load(std::memory_order_acquire)) {
// size_t n =0;
// do{
// *data << rx_q;
// ++n;
// } while (*data++ != base_type::delimiter);
// lines.fetch_sub(1, std::memory_order_acq_rel);
// return n;
// }
// } while (wait);
// return 0;
// }
// size_t put (const char* data, size_t n) {
// const char* reply = cmd_responce (data);
// while (*reply)
// rx_q << *reply++;
// return n;
// }
// const range_t contents() const {
// return range_t {rx_q.begin(), rx_q.end()};
// }
// clock_t clock() { static clock_t t=0; return ++t; }
//
// // extra helper for testing purposes
// void async (event e) {
// const char* reply =event_responce (e);
// while (*reply)
// rx_q << *reply++;
// }
//};
//
//// Behavior flag
//bool handler_flag = false;
//void handler (const char* data, size_t n) {
// (void)*data;
// (void)n;
//// std::cout << "* handler called\n";
// handler_flag = true;
//}
//void clear_flag () {
// handler_flag = false;
//}
//
//int main(int argc, char **argv) try {
// BG95 modem;
//
// const BG95::async_handlers<2> async = {{
// {"+QMTOPEN:", BG95::match_t::STARTS_WITH, handler, BG95::action_t::NO, 0},
// {"+QMT", BG95::match_t::STARTS_WITH, handler, BG95::action_t::NO, 0},
// }};
// const BG95::script_t<5, 2> script = {{
// /* 0 */{BG95::control_t::NOP, {"", BG95::match_t::NO, nullptr, BG95::action_t::GOTO, 1}, 1000},
// /* 1 */{BG95::control_t::SEND, {"ATE0\r\n", BG95::match_t::NO, nullptr, BG95::action_t::NEXT, 0}, 0},
// /* 2 */{BG95::control_t::EXPECT, {{
// {"OK\r\n", BG95::match_t::ENDS_WITH, nullptr, BG95::action_t::NEXT, 0},
// {"ERROR", BG95::match_t::CONTAINS, nullptr, BG95::action_t::EXIT_ERROR, 0} }},
// 1000
// },
// /* 3 */{BG95::control_t::SEND, {"AT+CSQ\r\n", BG95::match_t::NO, nullptr, BG95::action_t::NEXT, 0}, 0},
// /* 4 */{BG95::control_t::EXPECT, {{
// {"OK\r\n", BG95::match_t::ENDS_WITH, nullptr, BG95::action_t::EXIT_OK, 0},
// {"ERROR", BG95::match_t::CONTAINS, nullptr, BG95::action_t::EXIT_ERROR, 0} }},
// 1000
// },
// }};
//
// std::atomic<bool> lock(true);
// std::thread th1 ([&](){
// do
// modem.inetd(async, false);
// while (lock.load(std::memory_order_acquire));
// });
// EXPECT_EQ (modem.run(script), true);
// lock.store(false, std::memory_order_acq_rel);
// th1.join();
//
//}
//catch (std::exception& e) {
// std::cout << "Exception: " << e.what() << '\n';
//}
GTEST_API_ int main(int argc, char **argv) try {
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
catch (std::exception& e) {
std::cout << "Exception: " << e.what() << '\n';
}

@ -0,0 +1 @@
Subproject commit f6365f900fb9b1cd6014c8d1cf13ceacf8faf3de

270
test/tests/BG95_base.cpp Normal file
View File

@ -0,0 +1,270 @@
/*!
* \file sequencer.cpp
*
* \copyright Copyright (C) 2020 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*
*/
#include <drv/BG95_base.h>
#include <gtest/gtest.h>
#include <cont/equeue.h>
//#include <map>
//#include <iostream>
#include <cstring>
#include <utility>
#ifndef WIN_TRHEADS
#include <mutex>
#include <thread>
#else
#include <mingw.thread.h>
#include <mingw.mutex.h>
#endif
namespace test_bg95_base {
using namespace tbx;
using Q = equeue<char, 512, true>;
// BG95 implementer mock
class BG95 : public BG95_base<BG95, Q, 256> {
using base_type = BG95_base<BG95, Q, 256>;
public:
enum class event {
MQTT_DISCONNECT, MQTT_RXDATA
};
// simulated modem operation
private:
struct cmd_pair {
const char *cmd;
const char *resp;
};
struct event_pair {
event e;
const char* resp;
};
std::array<cmd_pair, 19> cmd_map = {{
{"ERROR", "\r\nERROR\r\n"},
{"ATE0\r\n", "\r\nATE0\r\nOK\r\n"},
{"AT\r\n", "\r\nOK\r\n"},
{"AT+QCFG=\"nwscanseq\"\r\n", "\r\n+QCFG: \"nwscanseq\",020301\r\n"},
{"AT+QCFG=\"nwscanseq\",010302\r\n", "\r\nOK\r\n"},
{"AT+CREG?\r\n", "\r\n+CREG: 0,5\r\n\r\nOK\r\n"},
{"AT+CSQ\r\n", "\r\n+CSQ: 19,99\r\n\r\nOK\r\n"},
{"AT+QNWINFO\r\n", "\r\n+QNWINFO: \"EDGE\",\"20201\",\"GSM 1800\",865\r\n\r\nOK\r\n"},
// Files
{"AT+QFLST\r\n", "\r\n+QFLST: \"cacert.pem\",1220\r\n+QFLST: \"security/\",2\r\nOK\r\n"},
// MQTT config
{"AT+QSSLCFG=\"ignorelocaltime\",2,1\r\n", "\r\nOK\r\n"},
{"AT+QSSLCFG=\"seclevel\",2,1\r\n", "\r\nOK\r\n"},
{"AT+QSSLCFG=\"sslversion\",2,4\r\n", "\r\nOK\r\n"},
{"AT+QSSLCFG=\"ciphersuite\",2\r\n", "\r\n+QSSLCFG: \"ciphersuite\",2,0XFFFF\r\n\r\nOK\r\n"},
{"AT+QMTCFG=\"ssl\",0,1,2\r\n", "\r\nOK\r\n"},
{"AT+QMTCFG=\"keepalive\",0,3600\r\n", "\r\nOK\r\n"},
// MQTT
{"AT+QMTOPEN=0,\"server.com\",8883\r\n", "\r\nOK\r\n\r\n+QMTOPEN: 0,0\r\n"},
{"AT+QMTCONN=0,\"myID\",\"user\",\"pass\"\r\n", "\r\nOK\r\n\r\n+QMTCONN: 0,0,0\r\n"},
{"AT+QMTSUB=0,1,\"/path/topic1\",2\r\n", "\r\nOK\r\n\r\n+QMTSUB: 0,1,0,2\r\n"},
{"AT+QMTPUB=0,0,0,0,\"/path/topic2\",9\r\n", "\r\n> \r\nOK\r\n\r\n+QMTPUB: 0,0,0\r\n"},
}};
std::array<event_pair, 2> event_map {{
{event::MQTT_DISCONNECT, "\r\n+QMTSTAT: 0,1\r\n"},
{event::MQTT_RXDATA, "\r\n+QMTRECV: 0,1,\"/path/topic1\",\"BR: hello to all of my subscribers\""}
}};
const char* cmd_responce (const char* cmd) {
for (auto& it : cmd_map) {
if (!strcmp(it.cmd, cmd))
return it.resp;
}
return cmd_map[0].resp;
}
const char* event_responce (const event e) {
for (auto& it : event_map) {
if (e == it.e)
return it.resp;
}
return nullptr; // non reachable
}
// data
Q rx_q{};
std::atomic<size_t> lines{};
public:
using range_t = typename Q::range_t;
public:
// BG95_base driver requirements
BG95() :
rx_q(Q::data_match::MATCH_PUSH, base_type::delimiter, [&](){
lines.fetch_add(1, std::memory_order_acq_rel);
}), lines(0) { }
size_t get(char* data, bool wait =false) {
do {
if (lines.load(std::memory_order_acquire)) {
size_t n =0;
do{
*data << rx_q;
++n;
} while (*data++ != base_type::delimiter);
lines.fetch_sub(1, std::memory_order_acq_rel);
return n;
}
} while (wait);
return 0;
}
size_t put (const char* data, size_t n) {
std::cerr << " ";
const char* reply = cmd_responce (data);
while (*reply)
rx_q << *reply++;
return n;
}
const range_t contents() const {
return range_t {rx_q.begin(), rx_q.end()};
}
clock_t clock() { static clock_t t=0; return ++t; }
// extra helper for testing purposes
void async (event e) {
const char* reply =event_responce (e);
while (*reply)
rx_q << *reply++;
}
};
// Behavior flag
bool handler_flag = false;
void handler (const char* data, size_t n) {
(void)*data;
(void)n;
// std::cout << "* handler called\n";
handler_flag = true;
}
void clear_flag () {
handler_flag = false;
}
/*
* Test inetd in non blocking mode
*/
TEST(TBG95_base, inetd_non_blocking) {
BG95 modem;
char buffer[256];
const BG95::async_handlers<2> async = {{
{"+QMTOPEN:", BG95::match_t::STARTS_WITH, handler, BG95::action_t::NO, 0},
{"+QMT", BG95::match_t::STARTS_WITH, handler, BG95::action_t::NO, 0},
}};
clear_flag();
modem.inetd(false, &async);
EXPECT_EQ (handler_flag, false);
modem.async(BG95::event::MQTT_DISCONNECT);
modem.inetd(false, &async); // parse "\r\n"
EXPECT_EQ (handler_flag, false);
modem.inetd(false, &async); // parse "+QMT*\r\n" and dispatch to handler()
EXPECT_EQ (handler_flag, true);
clear_flag(); // nothing to parse
modem.inetd(false, &async);
modem.inetd(false, &async);
modem.inetd(false, &async);
EXPECT_EQ (handler_flag, false);
EXPECT_NE (modem.receive(buffer), 0UL); // "\r\n" in buffer
EXPECT_EQ (strcmp(buffer, "\r\n"), 0);
clear_flag();
modem.inetd(false, &async);
EXPECT_EQ (handler_flag, false);
modem.transmit("AT+CSQ\r\n", 8);
EXPECT_EQ (modem.receive(buffer), 0UL);
modem.inetd(false, &async); // parse "\r\n"
EXPECT_NE (modem.receive(buffer), 0UL);
EXPECT_EQ (strcmp(buffer, "\r\n"), 0);
modem.inetd(false, &async); // parse "+CSQ: 19,99\r\n"
EXPECT_NE (modem.receive(buffer), 0UL);
EXPECT_EQ (strcmp(buffer, "+CSQ: 19,99\r\n"), 0);
modem.inetd(false, &async); // parse "\r\n"
EXPECT_NE (modem.receive(buffer), 0UL);
EXPECT_EQ (strcmp(buffer, "\r\n"), 0);
modem.inetd(false, &async); // parse "OK\r\n"
EXPECT_NE (modem.receive(buffer), 0UL);
EXPECT_EQ (strcmp(buffer, "OK\r\n"), 0);
modem.inetd(false, &async); // nothing to parse
modem.inetd(false, &async);
modem.inetd(false, &async);
EXPECT_EQ (modem.receive(buffer), 0UL);
}
TEST(TBG95_base, run) {
BG95 modem;
const BG95::async_handlers<2> async = {{
{"+QMTOPEN:", BG95::match_t::STARTS_WITH, handler, BG95::action_t::NO, 0},
{"+QMT", BG95::match_t::STARTS_WITH, handler, BG95::action_t::NO, 0},
}};
const BG95::script_t<5> script = {{
/* 0 */{BG95::control_t::NOP, {"", BG95::match_t::NO, nullptr, BG95::action_t::GOTO, 1}, 1000},
/* 1 */{BG95::control_t::SEND, {"ATE0\r\n", BG95::match_t::NO, nullptr, BG95::action_t::NEXT, 0}, 0},
/* 2 */{BG95::control_t::EXPECT, {{
{"OK\r\n", BG95::match_t::ENDS_WITH, nullptr, BG95::action_t::NEXT, 0},
{"ERROR", BG95::match_t::CONTAINS, nullptr, BG95::action_t::EXIT_ERROR, 0} }},
1000
},
/* 3 */{BG95::control_t::SEND, {"AT+CSQ\r\n", BG95::match_t::NO, nullptr, BG95::action_t::NEXT, 0}, 0},
/* 4 */{BG95::control_t::EXPECT, {{
{"OK\r\n", BG95::match_t::ENDS_WITH, nullptr, BG95::action_t::EXIT_OK, 0},
{"ERROR", BG95::match_t::CONTAINS, nullptr, BG95::action_t::EXIT_ERROR, 0} }},
1000
},
}};
std::atomic<bool> lock(true);
std::thread th1 ([&](){
do
modem.inetd(false, &async);
while (lock.load(std::memory_order_acquire));
});
EXPECT_EQ (modem.run(script), true);
lock.store(false, std::memory_order_acq_rel);
th1.join();
}
TEST(TBG95_base, command) {
BG95 modem;
std::atomic<bool> lock(true);
std::thread th1 ([&](){
do
modem.inetd(false);
while (lock.load(std::memory_order_acquire));
});
EXPECT_EQ (modem.registered(), true);
lock.store(false, std::memory_order_acq_rel);
th1.join();
}
}

View File

@ -29,12 +29,44 @@
*
*/
#include <cont/deque.h>
#include <cont/span.h>
#include <gtest/gtest.h>
#include <array>
#include <type_traits>
namespace Tdeque {
using namespace tbx;
template <typename>
struct is_span : std::false_type {};
template <typename T, std::size_t S>
struct is_span<tbx::span<T, S>> : std::true_type {};
template <typename>
struct is_std_array : std::false_type {};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename, typename = void>
struct has_size_and_data : std::false_type {};
template <typename T>
struct has_size_and_data<T, std::void_t<decltype(std::declval<T>().size()),
decltype(std::declval<T>().data())>>
: std::true_type {};
// Concept
TEST(Tdeque, concept) {
using deque_t = deque<int, 8>;
EXPECT_EQ (true, !is_span<deque_t>::value);
EXPECT_EQ (true, !is_std_array<deque_t>::value);
EXPECT_EQ (true, !std::is_array<deque_t>::value);
EXPECT_EQ (true, has_size_and_data<deque_t>::value);
}
// Test construction
TEST(Tdeque, contruct) {
deque<int, 8> q1;
@ -192,5 +224,190 @@ namespace Tdeque {
EXPECT_EQ(6, check_it); // run through all
}
TEST (Tdeque, range) {
deque<int, 8> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
for (auto& it : q1.contents())
EXPECT_EQ(it, check_it++);
EXPECT_EQ(9, check_it); // run through all
}
// Concept
TEST(Tdeque, concept_atomic) {
using deque_t = deque<int, 8, true>;
EXPECT_EQ (true, !is_span<deque_t>::value);
EXPECT_EQ (true, !is_std_array<deque_t>::value);
EXPECT_EQ (true, !std::is_array<deque_t>::value);
EXPECT_EQ (true, has_size_and_data<deque_t>::value);
}
// Test construction
TEST(Tdeque, contruct_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
deque<int, 8, true> q3{1, 2, 3, 4, 5};
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (8UL, q3.capacity());
EXPECT_EQ (5UL, q3.size());
}
// simple push-pop functionality
TEST(Tdeque, push_pop_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(1);
q1.push_front(2);
EXPECT_EQ (1, q1.pop_back());
EXPECT_EQ (2, q1.pop_back());
q1.push_back(1);
q1.push_back(2);
EXPECT_EQ (1, q1.pop_front());
EXPECT_EQ (2, q1.pop_front());
q1.push_front(2);
q1.push_back(3);
q1.push_front(1);
q1.push_back(4);
for (int i=1 ; i<= 4 ; ++i)
EXPECT_EQ ((int)i, q1.pop_front());
}
// front-back
TEST(Tdeque, front_back_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(2);
q1.push_front(1);
q1.push_back(3);
q1.push_back(4);
EXPECT_EQ (1, q1.front());
EXPECT_EQ (4, q1.back());
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
}
// capacity
TEST(Tdeque, capacity_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_back(1);
q1.clear();
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (true, q2.full());
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.size());
q1.push_back(2);
EXPECT_EQ (1UL, q1.size());
q1.push_front(1);
EXPECT_EQ (2UL, q1.size());
q1.pop_back();
EXPECT_EQ (1UL, q1.size());
q1.pop_front();
EXPECT_EQ (0UL, q1.size());
}
// push-pop limits
TEST (Tdeque, push_pop_limits_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
EXPECT_EQ (int{}, q1.pop_back());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
EXPECT_EQ (int{}, q1.pop_front());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
q2.push_front(0);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
q2.push_back(9);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
}
// iterators
TEST (Tdeque, iterators_atomic) {
deque<int, 8, true> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
EXPECT_EQ (q1.begin().base(), q1.end().base());
EXPECT_NE (q1.begin().iter(), q1.end().iter());
EXPECT_EQ (1, *q1.begin());
EXPECT_EQ (true, (q1.begin() == ++q1.end())); // loop edge iterators
for (auto it = q1.begin() ; it != q1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(9, check_it); // run through all
EXPECT_EQ (1, q1.front()); // queue stays intact
EXPECT_EQ (8, q1.back());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
q1.pop_front();
q1.pop_back();
check_it=2;
for (auto& it : q1)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(8, check_it); // run through all
EXPECT_EQ (2, q1.front()); // queue stays intact
EXPECT_EQ (7, q1.back());
EXPECT_EQ (6UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (false, q1.full());
deque<int, 8, true> q2;
q2.push_front(2);
q2.push_front(1);
q2.push_back(3);
q2.push_back(4);
q2.push_back(5);
check_it =1;
for (auto& it : q2)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(6, check_it); // run through all
}
TEST (Tdeque, range_atomic) {
deque<int, 8, true> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
for (auto& it : q1.contents())
EXPECT_EQ(it, check_it++);
EXPECT_EQ(9, check_it); // run through all
}
}

View File

@ -1,7 +1,7 @@
/*!
* \file deque.cpp
* \brief
* Unit tests for deque
* Unit tests for edeque
*
* \copyright Copyright (C) 2020 Christos Choutouridis <christos@choutouridis.net>
*
@ -33,7 +33,7 @@
#include <functional>
namespace Tdeque {
namespace Tedeque {
using namespace tbx;
int global_flag =0;
@ -132,15 +132,15 @@ namespace Tdeque {
e1.check_trigger(); // manual trigger attempt
EXPECT_EQ (false, flag); // [SIZE triggers are auto clear]
Edeque e2(Edeque::data_match::MATCH, 42, [&](){ flag = true; });
Edeque e2(Edeque::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
flag = false;
e2.clear_trigger();
EXPECT_EQ (false, flag);
e2.push_back(42); // push 42, no-trigger cleared
EXPECT_EQ (false, flag);
e2.set_trigger(Edeque::data_match::MATCH, 42, [&](){ flag = true; });
e2.set_trigger(Edeque::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
e2.pop_back(); // pop 42, trigger
e2.push_back(42); // push 42, trigger
EXPECT_EQ (true, flag);
flag = false;
@ -236,8 +236,8 @@ namespace Tdeque {
using Edeque = edeque<int, 8>;
bool flag{};
// data_match::MATCH (item == 42)
Edeque ee(Edeque::data_match::MATCH, 42, [&](){ flag = true; });
// data_match::MATCH_PUSH (item == 42)
Edeque ee(Edeque::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
flag = false;
ee.push_back(7); // 7
@ -246,14 +246,28 @@ namespace Tdeque {
EXPECT_EQ (true, flag);
flag = false;
ee.pop_back(); // pop:42, no-trigger
EXPECT_EQ (false, flag);
ee.push_back(42); // push:42, re-trigger
EXPECT_EQ (true, flag);
// data_match::MATCH_POP (item == 42)
flag = false;
ee.clear_trigger();
ee.set_trigger(Edeque::data_match::MATCH_POP, 42, [&](){ flag = true; });
ee.push_back(7); // 7
EXPECT_EQ (false, flag);
ee.push_back(42); // push:42, no-trigger
EXPECT_EQ (false, flag);
ee.pop_back(); // pop:42, trigger
EXPECT_EQ (true, flag);
// data_match::MATCH (item != 42)
// data_match::MISMATCH_PUSH (item != 42)
flag = false;
ee.clear();
ee.clear_trigger();
ee.push_back(7); // 7
ee.set_trigger(Edeque::data_match::MISMATCH, 42, [&](){ flag = true; });
ee.set_trigger(Edeque::data_match::MISMATCH_PUSH, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
ee.push_back(42); // 42, no-trigger
EXPECT_EQ (false, flag);
@ -263,5 +277,279 @@ namespace Tdeque {
flag = false;
ee.push_back(1); // 1, re-trigger
EXPECT_EQ (true, flag);
// data_match::MISMATCH_POP (item != 42)
flag = false;
ee.clear();
ee.clear_trigger();
ee.push_back(7); // ->7
ee.pop_back(); // <-7
ee.set_trigger(Edeque::data_match::MISMATCH_POP, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
ee.push_back(42); // ->42, no-trigger
EXPECT_EQ (false, flag);
ee.push_back(0); // ->0, no-trigger
EXPECT_EQ (false, flag);
ee.pop_back(); // pop:0, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.push_back(0);
ee.pop_back(); // pop:0, re-trigger
EXPECT_EQ (true, flag);
}
// atomic
TEST (Tedeque, construct_atomic) {
using Edeque = edeque<int, 8, true>;
struct T { int a,b; };
int local{};
Edeque e1(Edeque::size_match::GE, 3, [](){
++global_flag;
});
Edeque e2(Edeque::size_match::GE, 3, [&](){
++local;
});
Edeque e3(Edeque::size_match::EQ, 7, vfun);
edeque<T, 8> e4(edeque<T, 8>::size_match::EQ, 2, vfoo{});
edeque<int, 8, true> q1;
edeque<int, 8, true> q2(edeque<int, 8, true>::size_match::DISABLED, 0, nullptr);
EXPECT_EQ (8UL, e1.capacity());
EXPECT_EQ (8UL, e2.capacity());
EXPECT_EQ (8UL, e3.capacity());
EXPECT_EQ (8UL, e4.capacity());
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q2.capacity());
}
TEST (Tedeque, base_class_atomic) {
using Edeque = edeque<int, 8, true>;
Edeque e1(Edeque::size_match::GE, 3, [](){
++global_flag;
});
// Access of base class functionality
EXPECT_EQ (8UL, e1.capacity());
EXPECT_EQ (0UL, e1.size());
EXPECT_EQ (true, e1.empty());
EXPECT_EQ (false, e1.full());
e1.push_back(7);
EXPECT_EQ (7, e1.front());
EXPECT_EQ (7, e1.back());
EXPECT_EQ (7, e1.pop_front());
e1.push_front(42);
EXPECT_EQ (42, e1.front());
EXPECT_EQ (42, e1.back());
EXPECT_EQ (42, e1.pop_back());
e1.push_back(1);
e1.push_back(2);
e1.push_back(3);
int check_it=1;
for (auto it = e1.begin() ; it != e1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(4, check_it); // run through all
}
TEST (Tedeque, set_clear_check_trigger_atomic) {
using Edeque = edeque<int, 8, true>;
bool flag{};
Edeque e1(Edeque::size_match::GE, 1, [&](){ flag = true; });
flag = false;
e1.clear_trigger();
EXPECT_EQ (false, flag);
e1.push_back(1); // 1, no-trigger cleared
EXPECT_EQ (false, flag);
flag = false;
e1.clear();
e1.clear_trigger();
EXPECT_EQ (false, flag); // no spurious triggers
e1.push_back(1); // 1
e1.push_back(2); // 2
e1.set_trigger(Edeque::size_match::GE, 1, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
e1.check_trigger(); // manual trigger
EXPECT_EQ (true, flag);
flag = false;
e1.check_trigger(); // manual trigger attempt
EXPECT_EQ (false, flag); // [SIZE triggers are auto clear]
Edeque e2(Edeque::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
flag = false;
e2.clear_trigger();
EXPECT_EQ (false, flag);
e2.push_back(42); // push 42, no-trigger cleared
EXPECT_EQ (false, flag);
e2.set_trigger(Edeque::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
e2.push_back(42); // push 42, trigger
EXPECT_EQ (true, flag);
flag = false;
e2.push_back(42); // push 42, re-trigger [DATA re-triggers]
EXPECT_EQ (true, flag);
}
TEST (Tedeque, size_triggers_atomic) {
using Edeque = edeque<int, 8, true>;
bool flag{};
// size_match::GE (size()>= 2)
Edeque ee(Edeque::size_match::GE, 2, [&](){ flag = true; });
flag = false;
ee.clear();
ee.push_back(1); // 1
EXPECT_EQ (false, flag);
ee.push_back(2); // 2, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.push_back(3); // 3, no-trigger cleared
EXPECT_EQ (false, flag);
// size_match::GT (size()> 1)
flag = false;
ee.clear();
ee.set_trigger(Edeque::size_match::GT, 1, [&](){ flag = true; });
ee.push_back(1); // 1
EXPECT_EQ (false, flag);
ee.push_back(2); // 2, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.push_back(3); // 3, no-trigger cleared
EXPECT_EQ (false, flag);
// size_match::LE (size()<= 1)
flag = false;
ee.clear();
ee.push_back(1); // 1
ee.push_back(2); // 2
ee.push_back(3); // 3
ee.set_trigger(Edeque::size_match::LE, 1, [&](){ flag = true; });
ee.pop_front(); // 2
EXPECT_EQ (false, flag);
ee.pop_front(); // 1, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.pop_front(); // 0, no-trigger cleared
EXPECT_EQ (false, flag);
// size_match::LT (size()< 2)
flag = false;
ee.clear();
ee.push_back(1); // 1
ee.push_back(2); // 2
ee.push_back(3); // 3
ee.set_trigger(Edeque::size_match::LT, 2, [&](){ flag = true; });
ee.pop_front(); // 2
EXPECT_EQ (false, flag);
ee.pop_front(); // 1, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.pop_front(); // 0, no-trigger cleared
EXPECT_EQ (false, flag);
// size_match::EQ (size()== 2)
flag = false;
ee.clear();
ee.set_trigger(Edeque::size_match::EQ, 2, [&](){ flag = true; });
ee.push_back(1); // 1
EXPECT_EQ (false, flag);
ee.push_back(2); // 2, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.push_back(3); // 3
ee.pop_front(); // 2, no-trigger cleared
EXPECT_EQ (false, flag);
// size_match::NE (size()!= 0)
flag = false;
ee.clear();
ee.set_trigger(Edeque::size_match::NE, 0, [&](){ flag = true; });
EXPECT_EQ (false, flag);
ee.push_back(1); // 1, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.push_back(2); // 2, no-trigger
EXPECT_EQ (false, flag);
}
TEST (Tedeque, data_triggers_atomic) {
using Edeque = edeque<int, 8, true>;
bool flag{};
// data_match::MATCH_PUSH (item == 42)
Edeque ee(Edeque::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
flag = false;
ee.push_back(7); // 7
EXPECT_EQ (false, flag);
ee.push_back(42); // push:42, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.pop_back(); // pop:42, no-trigger
EXPECT_EQ (false, flag);
ee.push_back(42); // push:42, re-trigger
EXPECT_EQ (true, flag);
// data_match::MATCH_POP (item == 42)
flag = false;
ee.clear_trigger();
ee.set_trigger(Edeque::data_match::MATCH_POP, 42, [&](){ flag = true; });
ee.push_back(7); // 7
EXPECT_EQ (false, flag);
ee.push_back(42); // push:42, no-trigger
EXPECT_EQ (false, flag);
ee.pop_back(); // pop:42, trigger
EXPECT_EQ (true, flag);
// data_match::MISMATCH_PUSH (item != 42)
flag = false;
ee.clear();
ee.clear_trigger();
ee.push_back(7); // 7
ee.set_trigger(Edeque::data_match::MISMATCH_PUSH, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
ee.push_back(42); // 42, no-trigger
EXPECT_EQ (false, flag);
ee.push_back(0); // 0, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.push_back(1); // 1, re-trigger
EXPECT_EQ (true, flag);
// data_match::MISMATCH_POP (item != 42)
flag = false;
ee.clear();
ee.clear_trigger();
ee.push_back(7); // ->7
ee.pop_back(); // <-7
ee.set_trigger(Edeque::data_match::MISMATCH_POP, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
ee.push_back(42); // ->42, no-trigger
EXPECT_EQ (false, flag);
ee.push_back(0); // ->0, no-trigger
EXPECT_EQ (false, flag);
ee.pop_back(); // pop:0, trigger
EXPECT_EQ (true, flag);
flag = false;
ee.push_back(0);
ee.pop_back(); // pop:0, re-trigger
EXPECT_EQ (true, flag);
}
}

View File

@ -128,15 +128,15 @@ namespace Tequeue {
e1.check_trigger(); // manual trigger attempt
EXPECT_EQ (false, flag); // [SIZE triggers are auto clear]
Equeue e2(Equeue::data_match::MATCH, 42, [&](){ flag = true; });
Equeue e2(Equeue::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
flag = false;
e2.clear_trigger();
EXPECT_EQ (false, flag);
e2.push_back(42); // push 42, no-trigger cleared
EXPECT_EQ (false, flag);
e2.set_trigger(Equeue::data_match::MATCH, 42, [&](){ flag = true; });
e2.set_trigger(Equeue::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
e2.pop_back(); // pop 42, trigger
e2.push_back(42); // push 42, trigger
EXPECT_EQ (true, flag);
flag = false;
@ -178,4 +178,140 @@ namespace Tequeue {
EXPECT_EQ (int{}, check_it);
}
// atomic
// Test construction
TEST(Tequeue, contruct_atomic) {
using Equeue = equeue<int, 8, true>;
struct T { int a,b; };
int local{};
Equeue e1(Equeue::size_match::GE, 3, [](){
++global_flag;
});
Equeue e2(Equeue::size_match::GE, 3, [&](){
++local;
});
Equeue e3(Equeue::size_match::EQ, 7, vfun);
equeue<T, 8> e4(equeue<T, 8>::size_match::EQ, 2, vfoo{});
equeue<int, 8, true> q1;
equeue<int, 8, true> q2(equeue<int, 8, true>::size_match::DISABLED, 0, nullptr);
EXPECT_EQ (8UL, e1.capacity());
EXPECT_EQ (8UL, e2.capacity());
EXPECT_EQ (8UL, e3.capacity());
EXPECT_EQ (8UL, e4.capacity());
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q2.capacity());
}
// simple push-pop functionality
TEST(Tequeue, base_class_atomic) {
using Equeue = equeue<int, 8, true>;
Equeue e1(Equeue::size_match::GE, 3, [](){
++global_flag;
});
// Access of base class functionality
EXPECT_EQ (8UL, e1.capacity());
EXPECT_EQ (0UL, e1.size());
EXPECT_EQ (true, e1.empty());
EXPECT_EQ (false, e1.full());
e1.push(42);
EXPECT_EQ (42, e1.front());
EXPECT_EQ (42, e1.back());
EXPECT_EQ (42, e1.pop());
e1.push(1);
e1.push(2);
e1.push(3);
int check_it=1;
for (auto it = e1.begin() ; it != e1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(4, check_it); // run through all
}
// trigger functionality
TEST (Tequeue, set_clear_check_trigger_atomic) {
using Equeue = equeue<int, 8, true>;
bool flag{};
Equeue e1(Equeue::size_match::GE, 1, [&](){ flag = true; });
flag = false;
e1.clear_trigger();
EXPECT_EQ (false, flag);
e1.push_back(1); // 1, no-trigger cleared
EXPECT_EQ (false, flag);
flag = false;
e1.clear();
e1.clear_trigger();
EXPECT_EQ (false, flag); // no spurious triggers
e1.push_back(1); // 1
e1.push_back(2); // 2
e1.set_trigger(Equeue::size_match::GE, 1, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
e1.check_trigger(); // manual trigger
EXPECT_EQ (true, flag);
flag = false;
e1.check_trigger(); // manual trigger attempt
EXPECT_EQ (false, flag); // [SIZE triggers are auto clear]
Equeue e2(Equeue::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
flag = false;
e2.clear_trigger();
EXPECT_EQ (false, flag);
e2.push_back(42); // push 42, no-trigger cleared
EXPECT_EQ (false, flag);
e2.set_trigger(Equeue::data_match::MATCH_PUSH, 42, [&](){ flag = true; });
EXPECT_EQ (false, flag); // no spurious triggers
e2.push_back(42); // push 42, trigger
EXPECT_EQ (true, flag);
flag = false;
e2.push_back(42); // push 42, re-trigger [DATA re-triggers]
EXPECT_EQ (true, flag);
}
// stream push-pop
TEST(Tequeue, stream_push_pop_atomic) {
equeue<int, 8, true> q1;
q1 << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8;
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
q1 << 9; // try to insert in full queue
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
int check_it=1;
for (auto it = q1.begin() ; it != q1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(9, check_it); // run through all
for (int i =1 ; i <= 8 ; ++i) {
check_it << q1;
EXPECT_EQ(i, check_it);
}
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
q1 >> check_it;
EXPECT_EQ (int{}, check_it);
}
}

View File

@ -109,4 +109,80 @@ namespace Tqueue {
EXPECT_EQ (int{}, check_it);
}
// Test construction
TEST(Tqueue, contruct_atomic) {
queue<int, 8, true> q1;
queue<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
queue<int, 8, true> q3{1, 2, 3, 4, 5};
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (8UL, q3.capacity());
EXPECT_EQ (5UL, q3.size());
}
// base class functionality check
TEST(Tqueue, base_class_atomic) {
queue<int, 8, true> q1;
// Access of base class functionality
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
q1.push(42);
EXPECT_EQ (42, q1.front());
EXPECT_EQ (42, q1.back());
EXPECT_EQ (42, q1.pop());
q1.push(1);
q1.push(2);
q1.push(3);
int check_it=1;
for (auto it = q1.begin() ; it != q1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(4, check_it); // run through all
}
// stream push-pop
TEST(Tqueue, stream_push_pop_atomic) {
queue<int, 8, true> q1;
q1 << 1 << 2 << 3 << 4 << 5 << 6 << 7 << 8;
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
q1 << 9; // try to insert in full queue
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
int check_it=1;
for (auto it = q1.begin() ; it != q1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(9, check_it); // run through all
for (int i =1 ; i <= 8 ; ++i) {
check_it << q1;
EXPECT_EQ(i, check_it);
}
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
q1 >> check_it;
EXPECT_EQ (int{}, check_it);
}
}

View File

@ -228,4 +228,197 @@ namespace Tring_iterator {
EXPECT_EQ (1, (i2 - i1)); // loop
}
// Test construction atomic
TEST(Tring_iterator, construct_atomic) {
int A[10];
//default constructor
ring_iterator<int*, 10, true> i1;
EXPECT_EQ(nullptr, i1.base());
EXPECT_EQ(nullptr, i1.iter());
EXPECT_EQ(10UL, i1.size());
// implementation specific (you can remove it freely)
EXPECT_EQ(2*sizeof(int*), sizeof(i1));
// basic
ring_iterator<int*, 10, true> i2(A);
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// basic from assignment
ring_iterator<int*, 10, true> i3 = A;
EXPECT_EQ(A, i3.base());
EXPECT_EQ(A, i3.iter());
EXPECT_EQ(10UL, i3.size());
// basic with offset
ring_iterator<int*, 10, true> i4(A, 5);
EXPECT_EQ(A, i4.base());
EXPECT_EQ(&A[5], i4.iter());
EXPECT_EQ(10UL, i4.size());
// copy (Legacy iterator)
auto i5 = i2;
EXPECT_EQ(A, i5.base());
EXPECT_EQ(A, i5.iter());
EXPECT_EQ(10UL, i5.size());
// arbitrary type
struct TT { int a,b,c; };
std::array<TT, 10> t;
ring_iterator<TT*, 10, true> it(t.data(), 2);
EXPECT_EQ(t.begin(), it.base());
EXPECT_EQ(&t[2], it.iter());
EXPECT_EQ(10UL, it.size());
}
// Legacy iterator atomic
TEST(Tring_iterator, LegacyIterator_atomic) {
EXPECT_EQ(true, (std::is_same<int, typename ring_iterator<int*, 10, true>::value_type>::value));
EXPECT_EQ(true, (std::is_same<std::ptrdiff_t, typename ring_iterator<int*, 10, true>::difference_type>::value));
EXPECT_EQ(true, (std::is_same<int&, typename ring_iterator<int*, 10, true>::reference>::value));
EXPECT_EQ(true, (std::is_same<int*, typename ring_iterator<int*, 10, true>::pointer>::value));
EXPECT_EQ(true, (std::is_same<std::random_access_iterator_tag, typename ring_iterator<int*, 10, true>::iterator_category>::value));
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> i1(A);
// copy constructible/assignable
auto i2 = i1;
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// dereferenceable - incrementable
ring_iterator<int*, 10, true> i3(A);
EXPECT_EQ(true, (std::is_reference<decltype(*i3)>::value));
EXPECT_EQ(true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(++i3)>::value));
EXPECT_EQ(true, (std::is_reference<decltype((*i3++))>::value));
// more practical
ring_iterator<int*, 10, true> i4(A);
ring_iterator<int*, 10, true> i5(A, 9);
EXPECT_EQ(A[0], *i4);
EXPECT_EQ(&A[1], (++i4).iter());
// check loop
EXPECT_EQ(A[9], *i5);
EXPECT_EQ(&A[0], (++i5).iter());
}
// Legacy input iterator atomic
TEST(Tring_iterator, LegacyInputIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> i1(A), i2(A), i3(A, 1);
struct T { int m; };
T B[5] { {0}, {1}, {2}, {3}, {4}};
ring_iterator<T*, 5, true> it(B);
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 == i2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 != i2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1)>::value));
EXPECT_EQ (true, (std::is_same<int, decltype(it->m)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(++i1)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1++)>::value));
// more practical
EXPECT_EQ (true, i1 == i2);
EXPECT_EQ (true, i1 != i3);
EXPECT_EQ (0, *i1);
EXPECT_EQ (0, it->m);
EXPECT_EQ (true, (++i1 == i3));
EXPECT_EQ (1, *i1++);
EXPECT_EQ (2, *i1);
}
// Legacy input iterator atomic
TEST(Tring_iterator, LegacyOutputIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (true, (std::is_assignable<decltype(*it), int>::value));
EXPECT_EQ (true, (std::is_assignable<decltype(*it++), int>::value));
// more practical
*it = 42;
EXPECT_EQ (42, A[0]);
*it++ = 7;
EXPECT_EQ (7, A[0]);
EXPECT_EQ (&A[1], it.iter());
}
// Legacy forward iterator atomic
TEST(Tring_iterator, LegacyForwardIterator_atomic)
{
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (0, *it++);
EXPECT_EQ (1, *it);
}
// Legacy bidirectional iterator atomic
TEST(Tring_iterator, LegacyBidirectionalIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(--it)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it--)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*it--)>::value));
// more practical
ring_iterator<int*, 10, true> i1(A), i2(A, 9);
EXPECT_EQ (9, *i2--); // check loop also
EXPECT_EQ (8, *i2);
EXPECT_EQ (0, *i1--); // check loop also
EXPECT_EQ (9, *i1);
}
// Legacy random access iterator atomic
TEST(Tring_iterator, LegacyRandomAccessIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it1(A), it2(A, 7);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(it1 += 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it1 + 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(7 + it1)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(it1 -= 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it1 - 7)>::value));
EXPECT_EQ (true, (std::is_same<std::ptrdiff_t, decltype(it1 - it2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(it1[7])>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 < it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 > it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 <= it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 >= it2)>::value));
// more practical
ring_iterator<int*, 10, true> i1(A), i2(A);
i1 += 7;
EXPECT_EQ (7, *i1);
i1 -= 7;
EXPECT_EQ (0, *i1);
i1 += 11;
EXPECT_EQ (1, *i1);
i1 -= 2;
EXPECT_EQ (9, *i1);
EXPECT_EQ (7, *(i2+7));
EXPECT_EQ (7, *(7+i2));
EXPECT_EQ (1, *(i2+11));
EXPECT_EQ (1, *(11+i2));
EXPECT_EQ (7, *(i1-2));
EXPECT_EQ (8, *(i2-2));
EXPECT_EQ (9, (i1 - i2));
EXPECT_EQ (1, (i2 - i1)); // loop
}
}

View File

@ -33,18 +33,26 @@
namespace test_sequencer {
using namespace tbx;
// Sequencer implementer mock
class Seq : public sequencer_t<Seq, char, 128> {
struct seq_cont_t {
const char *msg_[10] = {
"", "", "", "\r\nOK\r\n",
"", "", "+CCLK = \"21/08/26-12:16:30+12\"\r\nOK\r\n"
"", "", "\r\nERROR\r\n"
};
using value_type = char;
using range_t = range<const char*>;
};
seq_cont_t seq_cont;
// Sequencer implementer mock
class Seq : public sequencer<Seq, seq_cont_t, char, 128> {
using range_t = typename seq_cont_t::range_t;
public:
size_t get(char* data) {
static int msg =0;
size_t len = strlen(msg_[msg]);
strcpy(data, msg_[msg++]);
size_t len = strlen(seq_cont.msg_[msg]);
strcpy(data, seq_cont.msg_[msg++]);
if (msg >= 10) msg =0;
return len;
}
@ -52,12 +60,14 @@ namespace test_sequencer {
(void)*data;
return n;
}
const range_t contents () const {
return range_t {&seq_cont.msg_[6][0], &seq_cont.msg_[6][5]};
}
clock_t clock() { static clock_t t=0; return ++t; }
static status_t my_handler (const char* data, size_t size) {
static void my_handler (const char* data, size_t size) {
(void)*data;
(void)size;
return Seq::status_t::OK;
}
};
@ -66,37 +76,37 @@ namespace test_sequencer {
*/
TEST(Tsequencer, run_delay) {
Seq s;
const std::array<Seq::record_t, 1> script = {{
const std::array<Seq::record_t<1>, 1> script = {{
/* 0 */{Seq::control_t::NOP, {"", Seq::match_t::NO, nullptr, Seq::action_t::EXIT_OK, 0}, 1000}
}};
EXPECT_EQ ((int)Seq::status_t::OK, (int)s.run(script));
EXPECT_EQ (s.run(script), true);
}
TEST(Tsequencer, run_dummy_output) {
Seq s;
const std::array<Seq::record_t, 2> script = {{
const std::array<Seq::record_t<1>, 2> script = {{
/* 0 */{Seq::control_t::SEND, {"", Seq::match_t::NO, nullptr, Seq::action_t::NEXT, 0}, 1000},
/* 1 */{Seq::control_t::SEND, {"", Seq::match_t::NO, nullptr, Seq::action_t::EXIT_OK, 0}, 1000}
}};
EXPECT_EQ ((int)Seq::status_t::OK, (int)s.run(script));
EXPECT_EQ (s.run(script), true);
}
TEST(Tsequencer, run_exits) {
Seq s;
const std::array<Seq::record_t, 1> script1 = {{
const std::array<Seq::record_t<1>, 1> script1 = {{
/* 0 */{Seq::control_t::SEND, {"", Seq::match_t::NO, nullptr, Seq::action_t::EXIT_OK, 0}, 1000},
}};
EXPECT_EQ ((int)Seq::status_t::OK, (int)s.run(script1));
EXPECT_EQ (s.run(script1), true);
const std::array<Seq::record_t, 1> script2 = {{
const std::array<Seq::record_t<1>, 1> script2 = {{
/* 0 */{Seq::control_t::SEND, {"", Seq::match_t::NO, nullptr, Seq::action_t::EXIT_ERROR, 0}, 1000},
}};
EXPECT_EQ ((int)Seq::status_t::ERROR, (int)s.run(script2));
EXPECT_EQ (s.run(script2), false);
}
TEST(Tsequencer, run_sequence) {
Seq s;
const std::array<Seq::record_t, 8> script = {{
const std::array<Seq::record_t<2>, 9> script = {{
/* 0 */{Seq::control_t::NOP, {"", Seq::match_t::NO, nullptr, Seq::action_t::GOTO, 1}, 1000},
/* 1 */{Seq::control_t::SEND, {"ATE0\r\n", Seq::match_t::NO, nullptr, Seq::action_t::NEXT, 0}, 1000},
/* 2 */{Seq::control_t::EXPECT, {{
@ -104,20 +114,25 @@ namespace test_sequencer {
{"ERROR", Seq::match_t::CONTAINS, nullptr, Seq::action_t::EXIT_ERROR, 0} }},
1000
},
/* 3 */{Seq::control_t::SEND, {"AT+CCLK?", Seq::match_t::NO, nullptr, Seq::action_t::NEXT, 0}, 1000},
/* 4 */{Seq::control_t::EXPECT, {{
/* 3 */{Seq::control_t::DETECT, {{
{"+CCLK", Seq::match_t::CONTAINS, nullptr, Seq::action_t::NEXT, 0},
{"ERROR", Seq::match_t::CONTAINS, nullptr, Seq::action_t::EXIT_ERROR, 0} }},
1000
},
/* 4 */{Seq::control_t::SEND, {"AT+CCLK?", Seq::match_t::NO, nullptr, Seq::action_t::NEXT, 0}, 1000},
/* 5 */{Seq::control_t::EXPECT, {{
{"OK\r\n", Seq::match_t::ENDS_WITH, Seq::my_handler, Seq::action_t::NEXT, 0},
{"ERROR", Seq::match_t::CONTAINS, nullptr, Seq::action_t::EXIT_ERROR, 0} }},
1000
},
/* 5 */{Seq::control_t::SEND, {"AT+CT?", Seq::match_t::NO, nullptr, Seq::action_t::NEXT, 0}, 1000},
/* 6 */{Seq::control_t::EXPECT, {{
/* 6 */{Seq::control_t::SEND, {"AT+CT?", Seq::match_t::NO, nullptr, Seq::action_t::NEXT, 0}, 1000},
/* 7 */{Seq::control_t::EXPECT, {{
{"OK\r\n", Seq::match_t::ENDS_WITH, nullptr, Seq::action_t::NEXT, 0},
{"ERROR", Seq::match_t::CONTAINS, nullptr, Seq::action_t::EXIT_ERROR, 0} }},
1000
},
/* 7 */{Seq::control_t::SEND, {"AT+POWD=0", Seq::match_t::NO, nullptr, Seq::action_t::EXIT_OK, 0}, 1000}
/* 8 */{Seq::control_t::SEND, {"AT+POWD=0", Seq::match_t::NO, nullptr, Seq::action_t::EXIT_OK, 0}, 1000}
}};
EXPECT_EQ ((int)Seq::status_t::ERROR, (int)s.run(script));
EXPECT_EQ (s.run(script), false);
}
}

274
test/tests/span.cpp Normal file
View File

@ -0,0 +1,274 @@
/*!
* \file span.cpp
* \brief
* Unit tests for span
*
* \copyright Copyright (C) 2020 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*
*/
#include <cont/span.h>
#include <gtest/gtest.h>
#include <cont/deque.h>
#include <vector>
#include <type_traits>
// tests from https://github.com/tcbrindle/span/blob/master/test/test_span.cpp
namespace test_span {
using namespace tbx;
TEST (Tspan, default_constructors) {
EXPECT_EQ (true, ( std::is_nothrow_default_constructible<span<int>>::value));
EXPECT_EQ (true, ( std::is_nothrow_default_constructible<span<int, 0>>::value));
EXPECT_EQ (true, (!std::is_nothrow_default_constructible<span<int, 42>>::value));
constexpr span<int> s1{};
EXPECT_EQ (0UL, s1.size());
EXPECT_EQ (nullptr, s1.data());
EXPECT_EQ (s1.begin(), s1.end());
constexpr span<int, 0> s2{};
EXPECT_EQ (0UL, s2.size());
EXPECT_EQ (nullptr, s2.data());
EXPECT_EQ (s2.begin(), s2.end());
}
TEST (Tspan, pointer_constructors) {
// pointer length
EXPECT_EQ (true, (std::is_constructible<span<int>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int>, const int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<int, 42>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int, 42>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int, 42>, const int*, int>::value));
int arr[] = {1, 2, 3};
// dynamic size
span<int> s1(arr, 3);
EXPECT_EQ (3UL, s1.size());
EXPECT_EQ (arr, s1.data());
EXPECT_EQ (std::begin(arr), s1.begin());
EXPECT_EQ (std::end(arr), s1.end());
// fixed size
span<int, 3> s2(arr, 3);
EXPECT_EQ (3UL, s2.size());
EXPECT_EQ (arr, s2.data());
EXPECT_EQ (std::begin(arr), s2.begin());
EXPECT_EQ (std::end(arr), s2.end());
// pointer pointer
EXPECT_EQ (true, (std::is_constructible<span<int>, int*, int*>::value));
EXPECT_EQ (true, (std::is_constructible<span<float>, float*, float*>::value));
EXPECT_EQ (true, (std::is_constructible<span<int, 42>, int*, int*>::value));
EXPECT_EQ (true, (std::is_constructible<span<float, 42>, float*, float*>::value));
// dynamic size
span<int> s3(arr, arr + 3);
EXPECT_EQ (3UL, s3.size());
EXPECT_EQ (arr, s3.data());
EXPECT_EQ (std::begin(arr), s3.begin());
EXPECT_EQ (std::end(arr), s3.end());
// fixed size
span<int, 3> s4(arr, arr + 3);
EXPECT_EQ (3UL, s4.size());
EXPECT_EQ (arr, s4.data());
EXPECT_EQ (std::begin(arr), s4.begin());
EXPECT_EQ (std::end(arr), s4.end());
}
TEST (Tspan, C_array_constructors) {
using int_array_t = int[3];
using float_array_t = float[3];
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int, 3>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, float_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, float_array_t>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, float_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, float_array_t&>::value));
int arr[] = {1, 2, 3};
// non-const dynamic size
span<int> s1{arr};
EXPECT_EQ (s1.size(), 3UL);
EXPECT_EQ (s1.data(), arr);
EXPECT_EQ (s1.begin(), std::begin(arr));
EXPECT_EQ (s1.end(), std::end(arr));
// non-const dynamic size
span<const int> s2{arr};
EXPECT_EQ (s2.size(), 3UL);
EXPECT_EQ (s2.data(), arr);
EXPECT_EQ (s2.begin(), std::begin(arr));
EXPECT_EQ (s2.end(), std::end(arr));
// non-const fixed size
span<int, 3> s3{arr};
EXPECT_EQ (s3.size(), 3UL);
EXPECT_EQ (s3.data(), arr);
EXPECT_EQ (s3.begin(), std::begin(arr));
EXPECT_EQ (s3.end(), std::end(arr));
// non-const fixed size
span<const int, 3> s4{arr};
EXPECT_EQ (s4.size(), 3UL);
EXPECT_EQ (s4.data(), arr);
EXPECT_EQ (s4.begin(), std::begin(arr));
EXPECT_EQ (s4.end(), std::end(arr));
}
TEST (Tspan, array_constructors) {
using int_array_t = std::array<int, 3>;
using float_array_t = std::array<float, 3>;
using zero_array_t = std::array<int, 0>;
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int>, float_array_t const&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int, 3>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, float_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, float_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, float_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<int>, zero_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, const zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int>, zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int>, const zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<int, 0>, zero_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 0>, const zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int, 0>, zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int, 0>, const zero_array_t&>::value));
int_array_t arr = {1, 2, 3};
// non-const, dynamic size
span<int> s1{arr};
EXPECT_EQ(s1.size(), 3UL);
EXPECT_EQ(s1.data(), arr.data());
EXPECT_EQ(s1.begin(), arr.data());
EXPECT_EQ(s1.end(), arr.data() + 3);
//const, dynamic size
span<int const> s2{arr};
EXPECT_EQ(s2.size(), 3UL);
EXPECT_EQ(s2.data(), arr.data());
EXPECT_EQ(s2.begin(), arr.data());
EXPECT_EQ(s2.end(), arr.data() + 3);
// non-const, static size
span<int, 3> s3{arr};
EXPECT_EQ(s3.size(), 3UL);
EXPECT_EQ(s3.data(), arr.data());
EXPECT_EQ(s3.begin(), arr.data());
EXPECT_EQ(s3.end(), arr.data() + 3);
// const, dynamic size
span<int const, 3> s4{arr};
EXPECT_EQ(s4.size(), 3UL);
EXPECT_EQ(s4.data(), arr.data());
EXPECT_EQ(s4.begin(), arr.data());
EXPECT_EQ(s4.end(), arr.data() + 3);
}
// TEST (Tspan, containter_constructors) {
// using container_t = tbx::deque<int, 3>;
//
// EXPECT_EQ (true, ( std::is_constructible<span<int>, container_t&>::value));
// EXPECT_EQ (true, (!std::is_constructible<span<int>, const container_t&>::value));
//
// EXPECT_EQ (true, ( std::is_constructible<span<const int>, container_t&>::value));
// EXPECT_EQ (true, ( std::is_constructible<span<const int>, const container_t&>::value));
//
// EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, container_t&>::value));
// EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, const container_t&>::value));
//
// EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, container_t&>::value));
// EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, const container_t&>::value));
//
// container_t cont = {1, 2, 3};
// const container_t ccont = {1, 2, 3};
//
// // non-const, dynamic size
// span<int> s1(cont);
// EXPECT_EQ(s1.size(), 3UL);
// EXPECT_EQ(s1.data(), cont.data());
// EXPECT_EQ(s1.begin(), cont.data());
// EXPECT_EQ(s1.end(), cont.data() + 3);
//
//
// //const, dynamic size
// span<int const> s2(cont);
// EXPECT_EQ(s2.size(), 3UL);
// EXPECT_EQ(s2.data(), cont.data());
// EXPECT_EQ(s2.begin(), cont.data());
// EXPECT_EQ(s2.end(), cont.data() + 3);
//
// }
}