Ver código fonte

DEV: A print interface and a timer_delay added

master
Christos Choutouridis 3 anos atrás
pai
commit
d16242ecbc
4 arquivos alterados com 650 adições e 1 exclusões
  1. +1
    -1
      include/drv/cli_device.h
  2. +2
    -0
      include/tbx.h
  3. +314
    -0
      include/utils/print.h
  4. +333
    -0
      include/utils/timer_delay.h

+ 1
- 1
include/drv/cli_device.h Ver arquivo

@@ -38,8 +38,8 @@
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <algorithm>
#include <utility>
#include <atomic>


+ 2
- 0
include/tbx.h Ver arquivo

@@ -38,6 +38,8 @@
#include <cont/equeue.h>
#include <utils/shared.h>
#include <utils/print.h>
#include <utils/timer_delay.h>
#include <drv/cli_device.h>
#include <drv/gpio.h>


+ 314
- 0
include/utils/print.h Ver arquivo

@@ -0,0 +1,314 @@
/*!
* \file utils/print.h
* \brief
* A CRTP base class to provide print interface
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef TBX_UTILS_PRINT_H_
#define TBX_UTILS_PRINT_H_
#include <core/core.h>
#include <core/crtp.h>
#include <cstring>
#include <math.h>
#include <string_view>
#include <type_traits>
#include <utility>
#include <limits>
namespace tbx {
/*!
* \class Print
* \brief
* A CRTP print interface
*
* Requirements:
* - size_t write_impl(const Char_t* buffer, size_t size) : Return the number of \c Char_t written
* - size_t write_(const Char_t ch) : Return the number of \c Char_t written (normally one).
*
* \tparam Impl_t The derived type
* \tparam Char_t The char type to use
*/
template <typename Impl_t, typename Char_t>
class Print {
_CRTP_IMPL(Impl_t);
public:
using value_type = Char_t;
using pointer_type = Char_t*;
using iterator_type = Char_t*;
using const_iterator_type = const Char_t*;
using difference_type = std::ptrdiff_t;
using size_type = size_t;
using str_view_t = std::basic_string_view<Char_t>;
//! Enumerator for number base formating
enum class Base {
BIN =2, OCT =8, DEC =10, HEX =16
};
private:
//! \name CRTP requirements
//! @{
size_t write_(const Char_t* buffer, size_t size) {
return impl().write_impl(buffer, size);
}
size_t write_(const Char_t ch) {
return impl().write_impl(ch);
}
//! @}
protected:
Print() noexcept = default; //!< Construct from derived only
private:
//! Helper tool to convert strong enums to their underlying type
template <typename E>
constexpr typename std::underlying_type_t<E> value(E e) noexcept {
return static_cast<typename std::underlying_type_t<E>>(e);
}
size_t print_unsigned(unsigned long n, Base base); // integer conversion base tool
size_t print_double(double number, uint8_t digits); // double conversion base tool
public:
/*!
* \brief
* Prints a string view
* \param str The string view to print
* \return The number of printed \c Char_t
*/
size_t print(const str_view_t str) {
return write_(str.data(), str.size());
}
/*!
* \brief
* Prints a string
* \param str Pointer to string to print
* \return The number of printed \c Char_t
*/
size_t print(const Char_t* str) {
if (str == nullptr)
return 0;
return write_(str, std::strlen(str));
}
/*!
* \brief
* Prints a buffer of size \c size. If there is a null termination
* before the end of the buffer, prints up to termination.
*
* \param str Pointer to string buffer to print
* \param size The size of buffer
* \return The number of printed \c Char_t
*/
size_t print(const Char_t* str, size_t size) {
if (str == nullptr)
return 0;
return write_(str, size);
}
/*!
* \brief
* Prints a \c Char_t
* \param ch The Char_t to print
* \return The number of printed \c Char_t
*/
size_t print(Char_t ch) {
return write_ (ch);
}
/*!
* \brief
* Convert and print a long.
* \param n The number to print
* \param base The number base to use for conversion.
* \return The number of printed \c Char_t
*/
size_t print(long n, Base base =Base::DEC) {
size_t cnt =0;
if (n < 0) {
n = -n;
cnt = write_ ('-');
}
return cnt + print_unsigned((unsigned long)n, base);
}
/*!
* \brief
* Convert and print an int.
* \param n The number to print
* \param base The number base to use for conversion.
* \return The number of printed \c Char_t
*/
size_t print(int n, Base base= Base::DEC) {
return print ((long)n, base);
}
/*!
* \brief
* Convert and print an unsigned long.
* \param n The number to print
* \param base The number base to use for conversion.
* \return The number of printed \c Char_t
*/
size_t print(unsigned long n, Base base= Base::DEC) {
return print_unsigned ((unsigned long)n, base);
}
/*!
* \brief
* Convert and print an unsigned int.
* \param n The number to print
* \param base The number base to use for conversion.
* \return The number of printed \c Char_t
*/
size_t print(unsigned int n, Base base= Base::DEC) {
return print_unsigned ((unsigned long)n, base);
}
/*!
* \brief
* Convert and print adouble
* \param n The number to print
* \param digits The number of decimal digits to print
* \return The number of printed \c Char_t
*/
size_t print(double n, uint8_t digits = 2) {
return print_double (n, digits);
}
/*!
* \brief
* Perfect forwarder to print functionality with a new line termination
* \tparam Ts The types of parameters
* \param args The arguments to pass
* \return The number of printed \c Char_t
*/
template <typename ...Ts>
size_t println(Ts&& ...args) {
size_t r = print (std::forward<Ts>(args)...);
r += write_ ('\n');
return r;
}
};
/*!
* \brief
* Converts and prints an unsigned long
*
* \tparam Impl_t The derived type
* \tparam Char_t The char type to use
*
* \param n The number to print
* \param base The number base to use
* \return The number of printed \c Char_t
*/
template <typename Impl_t, typename Char_t>
size_t Print<Impl_t, Char_t>::print_unsigned(unsigned long n, Base base) {
Char_t buf[8 *sizeof(Char_t) * sizeof(long) + 1]; // Assumes 8-bit chars plus zero byte.
Char_t *str = &buf[sizeof(buf) - 1];
*str = '\0';
do {
Char_t c = n % value(base);
n /= value(base);
*--str = c < 10 ? c + '0' : c + 'A' - 10;
} while(n);
return write_(str, std::strlen(str));
}
/*!
* \brief
* Converts and prints a double
*
* \note
* Internally, this implementation uses a long to store the integer part of the number.
* Thus overflows for numbers bigger than std::numeric_limits<long>::max() / min().
* For these numbers it prints "ovf" instead.
*
* \tparam Impl_t The derived type
* \tparam Char_t The char type to use
*
* \param n The number to print
* \param digits The number of decimal digits to print
* \return The number of printed \c Char_t
*/
template <typename Impl_t, typename Char_t>
size_t Print<Impl_t, Char_t>::print_double(double number, uint8_t digits) {
size_t n = 0;
if (std::isnan(number)) return print("nan");
if (std::isinf(number)) return print("inf");
if (number > (double)std::numeric_limits<long>::max())
return print ("ovf");
if (number < (double)std::numeric_limits<long>::min())
return print ("-ovf");
// Handle negative numbers
if (number < 0.0) {
n += write_ ('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i=0; i<digits; ++i)
rounding /= 10.0;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
n += print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits > 0) {
n += print('.');
}
// Extract digits from the remainder one at a time
while (digits-- > 0) {
remainder *= 10.0;
unsigned int toPrint = (unsigned int)(remainder);
n += print(toPrint);
remainder -= toPrint;
}
return n;
}
}
#endif /* TBX_UTILS_PRINT_H_ */

+ 333
- 0
include/utils/timer_delay.h Ver arquivo

@@ -0,0 +1,333 @@
/*!
* \file utils/timer_delay.h
* \brief
* A CRTP timer delay utility
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef TBX_UTILS_TIMER_DELAY_H_
#define TBX_UTILS_TIMER_DELAY_H_
#include <core/core.h>
#include <core/crtp.h>
#include <type_traits>
namespace tbx {
/*!
* \class timer_delay
* \brief
* A CRTP hw timer based, delay implementation.
*
* CRTP requirements:
* - int set_frequency_impl (size_t freq, Counter_t ticks)
* Initialize and start the hw timer with tick frequency \c freq and reload value \c ticks
* - volatile Counter_t* get_value_ptr_impl (Counter_t discard)
* Return a pointer to hw timer counter value register. The \c discard argument should discarded.
*
* \tparam Impl_t The derived class
* \tparam Counter_t The hw timer's type
*/
template <typename Impl_t, typename Counter_t>
class timer_delay {
_CRTP_IMPL(Impl_t);
using value_t = volatile Counter_t;
using marker_t = std::make_signed_t<std::remove_cv_t<Counter_t>>;
//! \name CRTP requirements
//! @{
private:
int set_frequency (size_t freq, Counter_t ticks) {
return impl().set_frequency_impl(freq, ticks);
}
volatile Counter_t* get_value_ptr (Counter_t discard = Counter_t{}) {
return impl().get_value_ptr_impl (discard);
}
//! @}
//! \name Object lifetime
//! @{
protected:
//! \brief
//! Create and initialize
//! \param freq The required hw timer's frequency
//! \param ticks The required timer's reload value
timer_delay (size_t freq, Counter_t ticks) {
init (freq, ticks);
}
timer_delay() noexcept = default; //!< Default object is valid, but non-usable
timer_delay(const timer_delay&) = delete; //!< No copies
timer_delay& operator=(const timer_delay&) = delete; //!< No copies
//! \note
//! We are not initializing the timer via default ctor, in order to be able to
//! declare a timer_delay object globally and initialize it after the call to main().
//! @}
private:
//! Period to frequency compile time tool
constexpr Counter_t period2freq (double period) noexcept {
return (Counter_t)(1 / period);
}
/*!
* \brief Return the systems best approximation for ticks per msec
* \return The calculated value or zero if no calculation can apply
*/
Counter_t ticks_per_msec () {
Counter_t tck = (Counter_t)(frequency / period2freq(0.001));
return (tck <= 1) ? 1 : tck;
}
/*!
* \brief Return the systems best approximation for ticks per usec
* \return The calculated value or zero if no calculation can apply
*/
Counter_t ticks_per_usec () {
Counter_t tck = (Counter_t)(frequency / period2freq(0.000001));
return (tck <= 1) ? 1 : tck;
}
/*!
* \brief Return the systems best approximation for ticks per usec
* \return The calculated value or zero if no calculation can apply
*/
Counter_t ticks_per_100nsec () {
Counter_t tck = (Counter_t)(frequency / period2freq(0.0000001));
return (tck <= 1) ? 1 : tck;
}
public:
/*!
* \brief
* Initializes both object members and hw timer.
*
* \param freq The required hw timer's frequency
* \param ticks The required timer's reload value
* \return
*/
bool init (size_t freq, Counter_t ticks) {
if (set_frequency(freq, ticks))
return false;
volatile Counter_t* v = get_value_ptr();
value = (v != nullptr) ? v : value;
frequency = freq;
max_ticks = ticks;
tp1ms = ticks_per_msec();
tp1us = ticks_per_usec();
tp100ns= ticks_per_100nsec();
return true;
}
/*!
* \brief
* A code based delay implementation, using hw timer for timing.
* This is NOT accurate but it ensures that the time passed is always
* more than the requested value.
* The delay values are multiplications of 1 msec.
* \param msec Time in msec for delay
*/
void delay_ms (int msec) {
marker_t m, m2, m1 = (marker_t)*value;
msec *= tp1ms;
// Eat the time difference from msec value.
do {
m2 = (marker_t)(*value);
m = m2 - m1;
msec -= (m>=0) ? m : max_ticks + m;
m1 = m2;
} while (msec>0);
}
/*!
* \brief
* A code based delay implementation, using hw timer for timing.
* This is NOT accurate but it ensures that the time passed is always
* more than the requested value.
* The delay values are multiplications of 1 usec.
* \param usec Time in usec for delay
*/
void delay_us (int usec) {
marker_t m, m2, m1 = (marker_t)*value;
usec *= tp1us;
if ((marker_t)(*value) - m1 > usec) // Very small delays may return here.
return;
// Eat the time difference from usec value.
do {
m2 = (marker_t)(*value);
m = m2 - m1;
usec -= (m>=0) ? m : max_ticks + m;
m1 = m2;
} while (usec>0);
}
/*!
* \brief
* A code based delay implementation, using hw timer for timing.
* This is NOT accurate but it ensures that the time passed is always
* more than the requested value.
* The delay values are multiplications of 100 nsec.
* \param _100nsec Time in 100nsec for delay
*/
void delay_100ns (int _100nsec) {
marker_t m, m2, m1 = (marker_t)*value;
_100nsec *= tp100ns;
if ((marker_t)(*value) - m1 > _100nsec) // Very small delays may return here.
return;
// Eat the time difference from _100nsec value.
do {
m2 = (marker_t)(*value);
m = m2 - m1;
_100nsec -= (m>=0) ? m : max_ticks + m;
m1 = m2;
} while (_100nsec>0);
}
/*!
* \brief
* A code based polling version delay implementation, using hw timer for timing.
* This is NOT accurate but it ensures that the time passed is always
* more than the requested value.
* The delay values are multiplications of 1 msec.
* \param msec Time in msec for delay
* \return The status of ongoing delay
* \arg false: Delay time has passed
* \arg true: Delay is ongoing, keep calling
*/
bool check_msec (int msec) {
static marker_t m1=-1, cnt;
marker_t m, m2;
if (m1 == -1) {
m1 = *value;
cnt = tp1ms * msec;
}
// Eat the time difference from msec value.
if (cnt>0) {
m2 = (marker_t)(*value);
m = m2-m1;
cnt -= (m>=0) ? m : max_ticks + m;
m1 = m2;
return 1; // wait
} else {
m1 = -1;
return 0; // do not wait any more
}
}
/*!
* \brief
* A code based polling version delay implementation, using hw timer for timing.
* This is NOT accurate but it ensures that the time passed is always
* more than the requested value.
* The delay values are multiplications of 1 usec.
* \param usec Time in usec for delay
* \return The status of ongoing delay
* \arg false: Delay time has passed
* \arg true: Delay is ongoing, keep calling
*/
bool check_usec (int usec) {
static marker_t m1=-1, cnt;
marker_t m, m2;
if (m1 == -1) {
m1 = *value;
cnt = tp1us * usec;
}
// Eat the time difference from usec value.
if (cnt>0) {
m2 = (marker_t)(*value);
m = m2-m1;
cnt -= (m>=0) ? m : max_ticks + m;
m1 = m2;
return 1; // wait
} else {
m1 = -1;
return 0; // do not wait any more
}
}
/*!
* \brief
* A code based polling version delay implementation, using hw timer for timing.
* This is NOT accurate but it ensures that the time passed is always
* more than the requested value.
* The delay values are multiplications of 100 nsec.
* \param
* _100nsec Time in 100nsec for delay
* \return The status of ongoing delay
* \arg false: Delay time has passed
* \arg true: Delay is ongoing, keep calling
*/
bool check_100nsec (int _100nsec) {
static marker_t m1=-1, cnt;
marker_t m, m2;
if (m1 == -1) {
m1 = *value;
cnt = tp100ns * _100nsec;
}
// Eat the time difference from _100nsec value.
if (cnt>0) {
m2 = (marker_t)(*value);
m = m2-m1;
cnt -= (m>=0) ? m : max_ticks + m;
m1 = m2;
return 1; // wait
}
else {
m1 = -1;
return 0; // do not wait any more
}
}
private:
static constexpr Counter_t zero = 0; //!< A always zero place
value_t* value {(value_t*)&zero}; //!< Pointer to hw timer's counter register
//!< We initialize it to &zero to avoid nullptr dereference
size_t frequency{}; //!< The frequency of the timer
Counter_t max_ticks{}; //!< The reload value of the timer
Counter_t tp1ms{}; //!< ticks per ms temporary variable
Counter_t tp1us{}; //!< ticks per us temporary variable
Counter_t tp100ns{}; //!< ticks per 100ns temporary variable
};
} // namespace tbx
#endif /* TBX_UTILS_TIMER_DELAY_H_ */

Carregando…
Cancelar
Salvar