Переглянути джерело

DEV: update deque functionality

master
Christos Choutouridis 3 роки тому
джерело
коміт
0a04a480f3
7 змінених файлів з 1621 додано та 16 видалено
  1. +53
    -15
      include/cont/deque.h
  2. +64
    -0
      include/cont/range.h
  3. +607
    -0
      include/cont/span.h
  4. +213
    -1
      include/core/ring_iterator.h
  5. +217
    -0
      test/tests/deque.cpp
  6. +193
    -0
      test/tests/ring_iterator.cpp
  7. +274
    -0
      test/tests/span.cpp

+ 53
- 15
include/cont/deque.h Переглянути файл

@@ -33,8 +33,10 @@
#include <core/core.h>
#include <core/ring_iterator.h>
#include <cont/range.h>
#include <array>
#include <atomic>
namespace tbx {
@@ -50,16 +52,21 @@ namespace tbx {
* We use a ring buffer of size \c N+1. We start the front iterator at the last location of the buffer
* and the rear on the first. This way when the queue is full the iterators are pointing to the same location.
*
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of deque
* \tparam Data_t The char-like queued item type. Usually \c char
* \tparam N The size of deque
* \tparam SemiAtomic True for semi-atomic operation. In that case the \c ring_iterator is also atomic.
* \note
* SemiAtomic means it is safe to access different ends from different threads. For example one thread can
* push only from front and another can pop from back to implement a queue.
*/
template <typename Data_t, size_t N>
template <typename Data_t, size_t N, bool SemiAtomic =false>
class deque {
public:
// meta-identity type
using type = deque<Data_t, N>;
using buffer_t = std::array<Data_t, N+1>; // We need N+1 spaces ring buffer for N spaces deque
using iterator_t = ring_iterator<Data_t*, N+1>;
using iterator_t = ring_iterator<Data_t*, N+1, SemiAtomic>;
using range_t = range<iterator_t>;
// STL
using value_type = Data_t;
@@ -103,9 +110,9 @@ class deque {
//! \name Iterators
//! @{
public:
constexpr iterator begin() noexcept { return f+1; }
constexpr const_iterator begin() const noexcept { return f+1; }
constexpr const_iterator cbegin() const noexcept { return f+1; }
constexpr iterator begin() noexcept { iterator ret = f; return ++ret; }
constexpr const_iterator begin() const noexcept { iterator ret = f; return ++ret; }
constexpr const_iterator cbegin() const noexcept { iterator ret = f; return ++ret; }
constexpr iterator end() noexcept { return r; }
constexpr const_iterator end() const noexcept { return r; }
@@ -115,9 +122,9 @@ class deque {
constexpr const_reverse_iterator rbegin() const noexcept { return r; }
constexpr const_reverse_iterator crbegin() const noexcept { return r; }
constexpr reverse_iterator rend() noexcept { return f+1; }
constexpr const_reverse_iterator rend() const noexcept { return f+1; }
constexpr const_reverse_iterator crend() const noexcept { return f+1; }
constexpr reverse_iterator rend() noexcept { reverse_iterator ret = f; return ++ret; }
constexpr const_reverse_iterator rend() const noexcept { reverse_iterator ret = f; return ++ret; }
constexpr const_reverse_iterator crend() const noexcept { reverse_iterator ret = f; return ++ret; }
//! @}
//! \name Capacity
@@ -127,6 +134,9 @@ class deque {
constexpr size_t size() noexcept {
return full() ? N: (r - f) -1;
}
constexpr size_t size() const noexcept {
return full() ? N: (r - f) -1;
}
//! \return The maximum size of the deque. The items the queue can hold.
constexpr size_t max_size() noexcept { return N; }
//! \return The capacity of the deque. The items the queue can hold.
@@ -134,7 +144,11 @@ class deque {
//! \return True if the deque is empty
constexpr bool empty() noexcept { return size() == 0 ? true : false; }
//! \return True if the deque is full
constexpr bool full() noexcept { return (r == f) ? true : false; }
constexpr bool full() noexcept {
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
return (r == f) ? true : false;
}
//! @}
//! \name Member access
@@ -145,41 +159,65 @@ class deque {
constexpr void clear() noexcept {
f = iterator_t(data_.data(), N);
r = iterator_t(data_.data());
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! \brief Push an item in the front of the deque
//! \param it The item to push
constexpr void push_front (const Data_t& it) {
if (full()) return;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
*f-- = it;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! \brief Extract an item from the front of the deque and remove it from the deque
//! \param it The item to push
constexpr Data_t pop_front () {
if (empty()) return Data_t{};
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
return *++f;
}
//! \brief Push an item in the back of the deque
//! \param it The item to push
constexpr void push_back (const Data_t& it) {
if (full()) return;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
*r++ = it;
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_release);
}
//! \brief Extract an item from the back of the deque and remove it from the deque
//! \param it The item to push
constexpr Data_t pop_back () {
if (empty()) return Data_t{};
if constexpr (SemiAtomic)
std::atomic_thread_fence(std::memory_order_acquire);
return *--r;
}
//! \brief Get a reference to the item in the front of the deque without extracting it.
//! \return Reference to the item
constexpr Data_t& front() noexcept { return *(f+1); }
constexpr const Data_t& front() const noexcept { return *(f+1); }
constexpr Data_t& front() noexcept { iterator_t it = f; return *++it; }
constexpr const Data_t& front() const noexcept { iterator_t it = f; return *++it; }
//! \brief Get a reference to the item in the front of the deque without extracting it.
//! \return Reference to the item
constexpr Data_t& back() noexcept { return *(r-1); }
constexpr const Data_t& back() const noexcept { return *(r-1); }
constexpr Data_t& back() noexcept { iterator_t it = r; return *--it; }
constexpr const Data_t& back() const noexcept { iterator_t it = r; return *--it; }
//! \brief Get a pointer to the begin of the items on the deque
//! \return
constexpr Data_t* data() noexcept { return &front(); }
constexpr const Data_t* data() const noexcept { return &front(); }
//! \brief Get a range for the data in queue
//! \return A begin-end iterator pair struct
constexpr range_t contents () noexcept { iterator_t b = f; return {++b, r}; }
constexpr const range_t contents () const noexcept { iterator_t b = f; return {++b, r}; }
//! @}
private:


+ 64
- 0
include/cont/range.h Переглянути файл

@@ -0,0 +1,64 @@
/*!
* \file cont/range.h
* \brief
* A plain definition of a range struct with agregate initialization
* and begin-end pairs.
*
* \copyright Copyright (C) 2021 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*/
#ifndef TBX_CONT_RANGE_H_
#define TBX_CONT_RANGE_H_
#include <core/core.h>
namespace tbx {
/*!
* \brief
* A plain definition of a range struct with begin-end pairs.
*
* \tparam Iter_t The iterator type of the range
*/
template <typename Iter_t>
struct range {
Iter_t b{}, e{};
// range () = default;
// range (const Iter_t& first, const Iter_t& last) noexcept :
// b(first), e(last) { }
// range (Iter_t first, Iter_t last) noexcept :
// b(first), e(last) { }
Iter_t begin() { return b; }
const Iter_t begin() const { return b; }
const Iter_t cbegin() const { return b; }
Iter_t end() { return e; }
const Iter_t end() const { return e; }
const Iter_t cend() const { return e; }
};
}
#endif /* TBX_CONT_RANGE_H_ */

+ 607
- 0
include/cont/span.h Переглянути файл

@@ -0,0 +1,607 @@
/*
* This is an implementation of C++20's std::span
* http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/n4820.pdf
*/
// Copyright Tristan Brindle 2018.
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
#ifndef TBX_CONT_SPAN_H_
#define TBX_CONT_SPAN_H_
#include <array>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#ifndef TBX_SPAN_NO_EXCEPTIONS
// Attempt to discover whether we're being compiled with exception support
#if !(defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND))
#define TBX_SPAN_NO_EXCEPTIONS
#endif
#endif
#ifndef TBX_SPAN_NO_EXCEPTIONS
#include <cstdio>
#include <stdexcept>
#endif
// Various feature test macros
#if __cplusplus >= 201703L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201703L)
#define TBX_SPAN_HAVE_CPP17
#endif
#if __cplusplus >= 201402L || (defined(_MSVC_LANG) && _MSVC_LANG >= 201402L)
#define TBX_SPAN_HAVE_CPP14
#endif
namespace tbx {
// Establish default contract checking behavior
#if !defined(TBX_SPAN_THROW_ON_CONTRACT_VIOLATION) && \
!defined(TBX_SPAN_TERMINATE_ON_CONTRACT_VIOLATION) && \
!defined(TBX_SPAN_NO_CONTRACT_CHECKING)
#if defined(NDEBUG) || !defined(TBX_SPAN_HAVE_CPP14)
#define TBX_SPAN_NO_CONTRACT_CHECKING
#else
#define TBX_SPAN_TERMINATE_ON_CONTRACT_VIOLATION
#endif
#endif
#if defined(TBX_SPAN_THROW_ON_CONTRACT_VIOLATION)
struct contract_violation_error : std::logic_error {
explicit contract_violation_error(const char* msg) : std::logic_error(msg)
{}
};
inline void contract_violation(const char* msg)
{
throw contract_violation_error(msg);
}
#elif defined(TBX_SPAN_TERMINATE_ON_CONTRACT_VIOLATION)
[[noreturn]] inline void contract_violation(const char* /*unused*/)
{
std::terminate();
}
#endif
#if !defined(TBX_SPAN_NO_CONTRACT_CHECKING)
#define TBX_SPAN_STRINGIFY(cond) #cond
#define TBX_SPAN_EXPECT(cond) \
cond ? (void) 0 : contract_violation("Expected " TBX_SPAN_STRINGIFY(cond))
#else
#define TBX_SPAN_EXPECT(cond)
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_inline_variables)
#define TBX_SPAN_INLINE_VAR inline
#else
#define TBX_SPAN_INLINE_VAR
#endif
#if defined(TBX_SPAN_HAVE_CPP14) || \
(defined(__cpp_constexpr) && __cpp_constexpr >= 201304)
#define TBX_SPAN_HAVE_CPP14_CONSTEXPR
#endif
#if defined(TBX_SPAN_HAVE_CPP14_CONSTEXPR)
#define TBX_SPAN_CONSTEXPR14 constexpr
#else
#define TBX_SPAN_CONSTEXPR14
#endif
#if defined(TBX_SPAN_HAVE_CPP14_CONSTEXPR) && \
(!defined(_MSC_VER) || _MSC_VER > 1900)
#define TBX_SPAN_CONSTEXPR_ASSIGN constexpr
#else
#define TBX_SPAN_CONSTEXPR_ASSIGN
#endif
#if defined(TBX_SPAN_NO_CONTRACT_CHECKING)
#define TBX_SPAN_CONSTEXPR11 constexpr
#else
#define TBX_SPAN_CONSTEXPR11 TBX_SPAN_CONSTEXPR14
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_deduction_guides)
#define TBX_SPAN_HAVE_DEDUCTION_GUIDES
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_lib_byte)
#define TBX_SPAN_HAVE_STD_BYTE
#endif
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_lib_array_constexpr)
#define TBX_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC
#endif
#if defined(TBX_SPAN_HAVE_CONSTEXPR_STD_ARRAY_ETC)
#define TBX_SPAN_ARRAY_CONSTEXPR constexpr
#else
#define TBX_SPAN_ARRAY_CONSTEXPR
#endif
#ifdef TBX_SPAN_HAVE_STD_BYTE
using byte = std::byte;
#else
using byte = unsigned char;
#endif
#if defined(TBX_SPAN_HAVE_CPP17)
#define TBX_SPAN_NODISCARD [[nodiscard]]
#else
#define TBX_SPAN_NODISCARD
#endif
TBX_SPAN_INLINE_VAR constexpr std::size_t dynamic_extent = SIZE_MAX;
template <typename ElementType, std::size_t Extent = dynamic_extent>
class span;
namespace detail {
template <typename E, std::size_t S>
struct span_storage {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t /*unused*/) noexcept
: ptr(p_ptr)
{}
E* ptr = nullptr;
static constexpr std::size_t size = S;
};
template <typename E>
struct span_storage<E, dynamic_extent> {
constexpr span_storage() noexcept = default;
constexpr span_storage(E* p_ptr, std::size_t p_size) noexcept
: ptr(p_ptr), size(p_size)
{}
E* ptr = nullptr;
std::size_t size = 0;
};
// Reimplementation of C++17 std::size() and std::data()
#if defined(TBX_SPAN_HAVE_CPP17) || \
defined(__cpp_lib_nonmember_container_access)
using std::data;
using std::size;
#else
template <class C>
constexpr auto size(const C& c) -> decltype(c.size())
{
return c.size();
}
template <class T, std::size_t N>
constexpr std::size_t size(const T (&)[N]) noexcept
{
return N;
}
template <class C>
constexpr auto data(C& c) -> decltype(c.data())
{
return c.data();
}
template <class C>
constexpr auto data(const C& c) -> decltype(c.data())
{
return c.data();
}
template <class T, std::size_t N>
constexpr T* data(T (&array)[N]) noexcept
{
return array;
}
template <class E>
constexpr const E* data(std::initializer_list<E> il) noexcept
{
return il.begin();
}
#endif // TBX_SPAN_HAVE_CPP17
#if defined(TBX_SPAN_HAVE_CPP17) || defined(__cpp_lib_void_t)
using std::void_t;
#else
template <typename...>
using void_t = void;
#endif
template <typename T>
using uncvref_t =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
template <typename>
struct is_span : std::false_type {};
template <typename T, std::size_t S>
struct is_span<span<T, S>> : std::true_type {};
template <typename>
struct is_std_array : std::false_type {};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename, typename = void>
struct has_size_and_data : std::false_type {};
template <typename T>
struct has_size_and_data<T, void_t<decltype(detail::size(std::declval<T>())),
decltype(detail::data(std::declval<T>()))>>
: std::true_type {};
template <typename C, typename U = uncvref_t<C>>
struct is_container {
static constexpr bool value =
!is_span<U>::value && !is_std_array<U>::value &&
!std::is_array<U>::value && has_size_and_data<C>::value;
};
template <typename T>
using remove_pointer_t = typename std::remove_pointer<T>::type;
template <typename, typename, typename = void>
struct is_container_element_type_compatible : std::false_type {};
template <typename T, typename E>
struct is_container_element_type_compatible<
T, E,
typename std::enable_if<
!std::is_same<typename std::remove_cv<decltype(
detail::data(std::declval<T>()))>::type,
void>::value>::type>
: std::is_convertible<
remove_pointer_t<decltype(detail::data(std::declval<T>()))> (*)[],
E (*)[]> {};
template <typename, typename = size_t>
struct is_complete : std::false_type {};
template <typename T>
struct is_complete<T, decltype(sizeof(T))> : std::true_type {};
} // namespace detail
template <typename ElementType, std::size_t Extent>
class span {
static_assert(std::is_object<ElementType>::value,
"A span's ElementType must be an object type (not a "
"reference type or void)");
static_assert(detail::is_complete<ElementType>::value,
"A span's ElementType must be a complete type (not a forward "
"declaration)");
static_assert(!std::is_abstract<ElementType>::value,
"A span's ElementType cannot be an abstract class type");
using storage_type = detail::span_storage<ElementType, Extent>;
public:
// constants and types
using element_type = ElementType;
using value_type = typename std::remove_cv<ElementType>::type;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using pointer = element_type*;
using const_pointer = const element_type*;
using reference = element_type&;
using const_reference = const element_type&;
using iterator = pointer;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_type extent = Extent;
// [span.cons], span constructors, copy, assignment, and destructor
template <
std::size_t E = Extent,
typename std::enable_if<(E == dynamic_extent || E <= 0), int>::type = 0>
constexpr span() noexcept
{}
TBX_SPAN_CONSTEXPR11 span(pointer ptr, size_type count)
: storage_(ptr, count)
{
TBX_SPAN_EXPECT(extent == dynamic_extent || count == extent);
}
TBX_SPAN_CONSTEXPR11 span(pointer first_elem, pointer last_elem)
: storage_(first_elem, last_elem - first_elem)
{
TBX_SPAN_EXPECT(extent == dynamic_extent ||
last_elem - first_elem ==
static_cast<std::ptrdiff_t>(extent));
}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
element_type (&)[N], ElementType>::value,
int>::type = 0>
constexpr span(element_type (&arr)[N]) noexcept : storage_(arr, N)
{}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
std::array<value_type, N>&, ElementType>::value,
int>::type = 0>
TBX_SPAN_ARRAY_CONSTEXPR span(std::array<value_type, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <std::size_t N, std::size_t E = Extent,
typename std::enable_if<
(E == dynamic_extent || N == E) &&
detail::is_container_element_type_compatible<
const std::array<value_type, N>&, ElementType>::value,
int>::type = 0>
TBX_SPAN_ARRAY_CONSTEXPR span(const std::array<value_type, N>& arr) noexcept
: storage_(arr.data(), N)
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
Container&, ElementType>::value,
int>::type = 0>
constexpr span(Container& cont)
// : storage_(detail::data(cont), detail::size(cont))
: storage_(cont.data(), cont.size())
{}
template <
typename Container, std::size_t E = Extent,
typename std::enable_if<
E == dynamic_extent && detail::is_container<Container>::value &&
detail::is_container_element_type_compatible<
const Container&, ElementType>::value,
int>::type = 0>
constexpr span(const Container& cont)
: storage_(detail::data(cont), detail::size(cont))
{}
constexpr span(const span& other) noexcept = default;
template <typename OtherElementType, std::size_t OtherExtent,
typename std::enable_if<
(Extent == OtherExtent || Extent == dynamic_extent) &&
std::is_convertible<OtherElementType (*)[],
ElementType (*)[]>::value,
int>::type = 0>
constexpr span(const span<OtherElementType, OtherExtent>& other) noexcept
: storage_(other.data(), other.size())
{}
~span() noexcept = default;
TBX_SPAN_CONSTEXPR_ASSIGN span&
operator=(const span& other) noexcept = default;
// [span.sub], span subviews
template <std::size_t Count>
TBX_SPAN_CONSTEXPR11 span<element_type, Count> first() const
{
TBX_SPAN_EXPECT(Count <= size());
return {data(), Count};
}
template <std::size_t Count>
TBX_SPAN_CONSTEXPR11 span<element_type, Count> last() const
{
TBX_SPAN_EXPECT(Count <= size());
return {data() + (size() - Count), Count};
}
template <std::size_t Offset, std::size_t Count = dynamic_extent>
using subspan_return_t =
span<ElementType, Count != dynamic_extent
? Count
: (Extent != dynamic_extent ? Extent - Offset
: dynamic_extent)>;
template <std::size_t Offset, std::size_t Count = dynamic_extent>
TBX_SPAN_CONSTEXPR11 subspan_return_t<Offset, Count> subspan() const
{
TBX_SPAN_EXPECT(Offset <= size() &&
(Count == dynamic_extent || Offset + Count <= size()));
return {data() + Offset,
Count != dynamic_extent ? Count : size() - Offset};
}
TBX_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
first(size_type count) const
{
TBX_SPAN_EXPECT(count <= size());
return {data(), count};
}
TBX_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
last(size_type count) const
{
TBX_SPAN_EXPECT(count <= size());
return {data() + (size() - count), count};
}
TBX_SPAN_CONSTEXPR11 span<element_type, dynamic_extent>
subspan(size_type offset, size_type count = dynamic_extent) const
{
TBX_SPAN_EXPECT(offset <= size() &&
(count == dynamic_extent || offset + count <= size()));
return {data() + offset,
count == dynamic_extent ? size() - offset : count};
}
// [span.obs], span observers
constexpr size_type size() const noexcept { return storage_.size; }
constexpr size_type size_bytes() const noexcept
{
return size() * sizeof(element_type);
}
TBX_SPAN_NODISCARD constexpr bool empty() const noexcept
{
return size() == 0;
}
// [span.elem], span element access
TBX_SPAN_CONSTEXPR11 reference operator[](size_type idx) const
{
TBX_SPAN_EXPECT(idx < size());
return *(data() + idx);
}
TBX_SPAN_CONSTEXPR11 reference front() const
{
TBX_SPAN_EXPECT(!empty());
return *data();
}
TBX_SPAN_CONSTEXPR11 reference back() const
{
TBX_SPAN_EXPECT(!empty());
return *(data() + (size() - 1));
}
constexpr pointer data() const noexcept { return storage_.ptr; }
// [span.iterators], span iterator support
constexpr iterator begin() const noexcept { return data(); }
constexpr iterator end() const noexcept { return data() + size(); }
TBX_SPAN_ARRAY_CONSTEXPR reverse_iterator rbegin() const noexcept
{
return reverse_iterator(end());
}
TBX_SPAN_ARRAY_CONSTEXPR reverse_iterator rend() const noexcept
{
return reverse_iterator(begin());
}
private:
storage_type storage_{};
};
#ifdef TBX_SPAN_HAVE_DEDUCTION_GUIDES
/* Deduction Guides */
template <class T, size_t N>
span(T (&)[N])->span<T, N>;
template <class T, size_t N>
span(std::array<T, N>&)->span<T, N>;
template <class T, size_t N>
span(const std::array<T, N>&)->span<const T, N>;
template <class Container>
span(Container&)->span<typename Container::value_type>;
template <class Container>
span(const Container&)->span<const typename Container::value_type>;
#endif // TCB_HAVE_DEDUCTION_GUIDES
template <typename ElementType, std::size_t Extent>
constexpr span<ElementType, Extent>
make_span(span<ElementType, Extent> s) noexcept
{
return s;
}
template <typename T, std::size_t N>
constexpr span<T, N> make_span(T (&arr)[N]) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TBX_SPAN_ARRAY_CONSTEXPR span<T, N> make_span(std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename T, std::size_t N>
TBX_SPAN_ARRAY_CONSTEXPR span<const T, N>
make_span(const std::array<T, N>& arr) noexcept
{
return {arr};
}
template <typename Container>
constexpr span<typename Container::value_type> make_span(Container& cont)
{
return {cont};
}
template <typename Container>
constexpr span<const typename Container::value_type>
make_span(const Container& cont)
{
return {cont};
}
template <typename ElementType, std::size_t Extent>
span<const byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<const byte*>(s.data()), s.size_bytes()};
}
template <
class ElementType, size_t Extent,
typename std::enable_if<!std::is_const<ElementType>::value, int>::type = 0>
span<byte, ((Extent == dynamic_extent) ? dynamic_extent
: sizeof(ElementType) * Extent)>
as_writable_bytes(span<ElementType, Extent> s) noexcept
{
return {reinterpret_cast<byte*>(s.data()), s.size_bytes()};
}
template <std::size_t N, typename E, std::size_t S>
constexpr auto get(span<E, S> s) -> decltype(s[N])
{
return s[N];
}
} // namespace tbx
namespace std {
template <typename ElementType, size_t Extent>
class tuple_size<tbx::span<ElementType, Extent>>
: public integral_constant<size_t, Extent> {};
template <typename ElementType>
class tuple_size<tbx::span<
ElementType, tbx::dynamic_extent>>; // not defined
template <size_t I, typename ElementType, size_t Extent>
class tuple_element<I, tbx::span<ElementType, Extent>> {
public:
static_assert(Extent != tbx::dynamic_extent &&
I < Extent,
"");
using type = ElementType;
};
} // end namespace std
#endif // TBX_CONT_SPAN_H_

+ 213
- 1
include/core/ring_iterator.h Переглянути файл

@@ -35,10 +35,11 @@
#include <iterator>
#include <type_traits>
#include <atomic>
namespace tbx {
template<typename Iter_t, size_t N>
template<typename Iter_t, size_t N, bool Atomic=false>
class ring_iterator {
//! \name STL iterator traits "forwarding"
//! @{
@@ -164,6 +165,9 @@ class ring_iterator {
return N;
}
constexpr operator Iter_t() noexcept { return iter_; }
constexpr operator const Iter_t() const noexcept { return iter_; }
protected:
Iter_t base_;
Iter_t iter_;
@@ -226,6 +230,214 @@ noexcept {
}
template<typename Iter_t, size_t N>
class ring_iterator<Iter_t, N, true> {
//! \name STL iterator traits "forwarding"
//! @{
protected:
using traits_type = std::iterator_traits<Iter_t>;
public:
using iterator_type = Iter_t;
using iterator_category = typename traits_type::iterator_category;
using value_type = typename traits_type::value_type;
using difference_type = typename traits_type::difference_type;
using reference = typename traits_type::reference;
using pointer = typename traits_type::pointer;
//! @}
//! \name Constructor / Destructor
//! @{
public:
constexpr ring_iterator(const Iter_t base =nullptr) noexcept :
base_(base), iter_(base) { }
constexpr ring_iterator(const Iter_t base, size_t elem) noexcept :
base_(base), iter_(base + elem) { }
constexpr ring_iterator(const ring_iterator& it) noexcept :
base_(it.base_) {
iter_ = it.iter_.load(std::memory_order_acquire);
}
constexpr ring_iterator& operator= (const ring_iterator& it) noexcept {
base_ = it.base_;
iter_ = it.iter_.load(std::memory_order_acquire);
return *this;
}
//! @}
//! \name Forward iterator requirements
//! @{
public:
constexpr reference operator*() const noexcept {
return *iter_.load(std::memory_order_acquire);
}
constexpr pointer operator->() const noexcept {
return iter_.load(std::memory_order_acquire);
}
constexpr ring_iterator& operator++() noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (static_cast<size_t>(++itnew - base_) >= N)
itnew = base_;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return *this;
}
constexpr ring_iterator operator++(int) noexcept {
ring_iterator it = *this;
this->operator ++();
return it;
}
//! @}
//! \name Bidirectional iterator requirements
//! @{
public:
constexpr ring_iterator& operator--() noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
if (--itnew < base_)
itnew = base_ + N -1;
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acq_rel));
return *this;
}
constexpr ring_iterator operator--(int) noexcept {
ring_iterator it = *this;
this->operator --();
return it;
}
//! @}
//! \name Random access iterator requirements
//! @{
constexpr reference operator[](difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
base_[k + n] : // on range
base_[k + n - N]; // out of range, loop
}
constexpr ring_iterator& operator+=(difference_type n) noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
difference_type k = it - base_; // ptrdiff from base_
itnew += (static_cast<size_t>(k + n) < N) ?
n : // on range
n - N; // out of range, loop
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acquire));
return *this;
}
constexpr ring_iterator operator+(difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return (static_cast<size_t>(k + n) < N) ?
ring_iterator(base_, k + n) : // on range
ring_iterator(base_, k + n - N); // out of range, loop
}
constexpr ring_iterator& operator-=(difference_type n) noexcept {
Iter_t itnew, it = iter_.load(std::memory_order_acquire);
do {
itnew = it;
difference_type k = it - base_; // ptrdiff from base_
itnew -= ((k - n) < 0)?
n - N: // out of range, loop
n; // on range
} while (!iter_.compare_exchange_weak(it, itnew, std::memory_order_acquire));
return *this;
}
constexpr ring_iterator operator-(difference_type n) const noexcept {
difference_type k = iter_.load(std::memory_order_acquire) - base_; // ptrdiff from base_
return ((k - n) < 0) ?
ring_iterator(base_, k - n + N) : // out of range, loop
ring_iterator(base_, k - n); // on range
}
//! @}
//! \name Data members and access
//! @{
constexpr const Iter_t& base() const noexcept {
return base_;
}
constexpr const Iter_t iter() const noexcept {
return iter_.load(std::memory_order_acquire);
}
constexpr size_t size() noexcept {
return N;
}
constexpr operator Iter_t() noexcept { return iter_.load(std::memory_order_acquire); }
constexpr operator const Iter_t() const noexcept { return iter_.load(std::memory_order_acquire); }
protected:
Iter_t base_;
std::atomic<Iter_t> iter_;
//! @}
};
// Forward iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator==(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() == rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator!=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() != rhs.iter();
}
// Random access iterator requirements
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() < rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator<=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() <= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() > rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline bool operator>=(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept {
return lhs.iter() >= rhs.iter();
}
template<typename Iter_L, typename Iter_R, size_t N>
inline auto operator-(const ring_iterator<Iter_L, N, true>& lhs, const ring_iterator<Iter_R, N, true>& rhs)
noexcept
-> decltype(lhs.iter() - rhs.iter()) {
auto diff = lhs.iter() - rhs.iter();
return diff < 0 ?
diff + N : // loop
diff; // no loop
}
template<typename Iter, size_t N>
inline ring_iterator<Iter, N, true> operator+(std::ptrdiff_t lhs, const ring_iterator<Iter, N, true>& rhs)
noexcept {
ring_iterator<Iter, N, true> it(rhs.iter());
return it += lhs;
}
} //namespace tbx;
#endif /* TBX_CORE_RING_ITERATOR_H_ */

+ 217
- 0
test/tests/deque.cpp Переглянути файл

@@ -29,12 +29,44 @@
*
*/
#include <cont/deque.h>
#include <cont/span.h>
#include <gtest/gtest.h>
#include <array>
#include <type_traits>
namespace Tdeque {
using namespace tbx;
template <typename>
struct is_span : std::false_type {};
template <typename T, std::size_t S>
struct is_span<tbx::span<T, S>> : std::true_type {};
template <typename>
struct is_std_array : std::false_type {};
template <typename T, std::size_t N>
struct is_std_array<std::array<T, N>> : std::true_type {};
template <typename, typename = void>
struct has_size_and_data : std::false_type {};
template <typename T>
struct has_size_and_data<T, std::void_t<decltype(std::declval<T>().size()),
decltype(std::declval<T>().data())>>
: std::true_type {};
// Concept
TEST(Tdeque, concept) {
using deque_t = deque<int, 8>;
EXPECT_EQ (true, !is_span<deque_t>::value);
EXPECT_EQ (true, !is_std_array<deque_t>::value);
EXPECT_EQ (true, !std::is_array<deque_t>::value);
EXPECT_EQ (true, has_size_and_data<deque_t>::value);
}
// Test construction
TEST(Tdeque, contruct) {
deque<int, 8> q1;
@@ -192,5 +224,190 @@ namespace Tdeque {
EXPECT_EQ(6, check_it); // run through all
}
TEST (Tdeque, range) {
deque<int, 8> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
for (auto& it : q1.contents())
EXPECT_EQ(it, check_it++);
EXPECT_EQ(9, check_it); // run through all
}
// Concept
TEST(Tdeque, concept_atomic) {
using deque_t = deque<int, 8, true>;
EXPECT_EQ (true, !is_span<deque_t>::value);
EXPECT_EQ (true, !is_std_array<deque_t>::value);
EXPECT_EQ (true, !std::is_array<deque_t>::value);
EXPECT_EQ (true, has_size_and_data<deque_t>::value);
}
// Test construction
TEST(Tdeque, contruct_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
deque<int, 8, true> q3{1, 2, 3, 4, 5};
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (8UL, q3.capacity());
EXPECT_EQ (5UL, q3.size());
}
// simple push-pop functionality
TEST(Tdeque, push_pop_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(1);
q1.push_front(2);
EXPECT_EQ (1, q1.pop_back());
EXPECT_EQ (2, q1.pop_back());
q1.push_back(1);
q1.push_back(2);
EXPECT_EQ (1, q1.pop_front());
EXPECT_EQ (2, q1.pop_front());
q1.push_front(2);
q1.push_back(3);
q1.push_front(1);
q1.push_back(4);
for (int i=1 ; i<= 4 ; ++i)
EXPECT_EQ ((int)i, q1.pop_front());
}
// front-back
TEST(Tdeque, front_back_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_front(2);
q1.push_front(1);
q1.push_back(3);
q1.push_back(4);
EXPECT_EQ (1, q1.front());
EXPECT_EQ (4, q1.back());
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
}
// capacity
TEST(Tdeque, capacity_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
q1.push_back(1);
q1.clear();
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (true, q2.full());
EXPECT_EQ (8UL, q1.capacity());
EXPECT_EQ (8UL, q2.capacity());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (8UL, q2.size());
q1.push_back(2);
EXPECT_EQ (1UL, q1.size());
q1.push_front(1);
EXPECT_EQ (2UL, q1.size());
q1.pop_back();
EXPECT_EQ (1UL, q1.size());
q1.pop_front();
EXPECT_EQ (0UL, q1.size());
}
// push-pop limits
TEST (Tdeque, push_pop_limits_atomic) {
deque<int, 8, true> q1;
deque<int, 8, true> q2{1, 2, 3, 4, 5, 6, 7, 8};
EXPECT_EQ (int{}, q1.pop_back());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
EXPECT_EQ (int{}, q1.pop_front());
EXPECT_EQ (0UL, q1.size());
EXPECT_EQ (true, q1.empty());
EXPECT_EQ (false, q1.full());
q2.push_front(0);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
q2.push_back(9);
EXPECT_EQ (1, q2.front());
EXPECT_EQ (8, q2.back());
EXPECT_EQ (8UL, q2.size());
EXPECT_EQ (false, q2.empty());
EXPECT_EQ (true, q2.full());
}
// iterators
TEST (Tdeque, iterators_atomic) {
deque<int, 8, true> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
EXPECT_EQ (q1.begin().base(), q1.end().base());
EXPECT_NE (q1.begin().iter(), q1.end().iter());
EXPECT_EQ (1, *q1.begin());
EXPECT_EQ (true, (q1.begin() == ++q1.end())); // loop edge iterators
for (auto it = q1.begin() ; it != q1.end() ; ++it)
EXPECT_EQ(*it, check_it++);
EXPECT_EQ(9, check_it); // run through all
EXPECT_EQ (1, q1.front()); // queue stays intact
EXPECT_EQ (8, q1.back());
EXPECT_EQ (8UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (true, q1.full());
q1.pop_front();
q1.pop_back();
check_it=2;
for (auto& it : q1)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(8, check_it); // run through all
EXPECT_EQ (2, q1.front()); // queue stays intact
EXPECT_EQ (7, q1.back());
EXPECT_EQ (6UL, q1.size());
EXPECT_EQ (false, q1.empty());
EXPECT_EQ (false, q1.full());
deque<int, 8, true> q2;
q2.push_front(2);
q2.push_front(1);
q2.push_back(3);
q2.push_back(4);
q2.push_back(5);
check_it =1;
for (auto& it : q2)
EXPECT_EQ(it, check_it++);
EXPECT_EQ(6, check_it); // run through all
}
TEST (Tdeque, range_atomic) {
deque<int, 8, true> q1{1, 2, 3, 4, 5, 6, 7, 8};
int check_it=1;
for (auto& it : q1.contents())
EXPECT_EQ(it, check_it++);
EXPECT_EQ(9, check_it); // run through all
}
}

+ 193
- 0
test/tests/ring_iterator.cpp Переглянути файл

@@ -228,4 +228,197 @@ namespace Tring_iterator {
EXPECT_EQ (1, (i2 - i1)); // loop
}
// Test construction atomic
TEST(Tring_iterator, construct_atomic) {
int A[10];
//default constructor
ring_iterator<int*, 10, true> i1;
EXPECT_EQ(nullptr, i1.base());
EXPECT_EQ(nullptr, i1.iter());
EXPECT_EQ(10UL, i1.size());
// implementation specific (you can remove it freely)
EXPECT_EQ(2*sizeof(int*), sizeof(i1));
// basic
ring_iterator<int*, 10, true> i2(A);
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// basic from assignment
ring_iterator<int*, 10, true> i3 = A;
EXPECT_EQ(A, i3.base());
EXPECT_EQ(A, i3.iter());
EXPECT_EQ(10UL, i3.size());
// basic with offset
ring_iterator<int*, 10, true> i4(A, 5);
EXPECT_EQ(A, i4.base());
EXPECT_EQ(&A[5], i4.iter());
EXPECT_EQ(10UL, i4.size());
// copy (Legacy iterator)
auto i5 = i2;
EXPECT_EQ(A, i5.base());
EXPECT_EQ(A, i5.iter());
EXPECT_EQ(10UL, i5.size());
// arbitrary type
struct TT { int a,b,c; };
std::array<TT, 10> t;
ring_iterator<TT*, 10, true> it(t.data(), 2);
EXPECT_EQ(t.begin(), it.base());
EXPECT_EQ(&t[2], it.iter());
EXPECT_EQ(10UL, it.size());
}
// Legacy iterator atomic
TEST(Tring_iterator, LegacyIterator_atomic) {
EXPECT_EQ(true, (std::is_same<int, typename ring_iterator<int*, 10, true>::value_type>::value));
EXPECT_EQ(true, (std::is_same<std::ptrdiff_t, typename ring_iterator<int*, 10, true>::difference_type>::value));
EXPECT_EQ(true, (std::is_same<int&, typename ring_iterator<int*, 10, true>::reference>::value));
EXPECT_EQ(true, (std::is_same<int*, typename ring_iterator<int*, 10, true>::pointer>::value));
EXPECT_EQ(true, (std::is_same<std::random_access_iterator_tag, typename ring_iterator<int*, 10, true>::iterator_category>::value));
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> i1(A);
// copy constructible/assignable
auto i2 = i1;
EXPECT_EQ(A, i2.base());
EXPECT_EQ(A, i2.iter());
EXPECT_EQ(10UL, i2.size());
// dereferenceable - incrementable
ring_iterator<int*, 10, true> i3(A);
EXPECT_EQ(true, (std::is_reference<decltype(*i3)>::value));
EXPECT_EQ(true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(++i3)>::value));
EXPECT_EQ(true, (std::is_reference<decltype((*i3++))>::value));
// more practical
ring_iterator<int*, 10, true> i4(A);
ring_iterator<int*, 10, true> i5(A, 9);
EXPECT_EQ(A[0], *i4);
EXPECT_EQ(&A[1], (++i4).iter());
// check loop
EXPECT_EQ(A[9], *i5);
EXPECT_EQ(&A[0], (++i5).iter());
}
// Legacy input iterator atomic
TEST(Tring_iterator, LegacyInputIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> i1(A), i2(A), i3(A, 1);
struct T { int m; };
T B[5] { {0}, {1}, {2}, {3}, {4}};
ring_iterator<T*, 5, true> it(B);
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 == i2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(i1 != i2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1)>::value));
EXPECT_EQ (true, (std::is_same<int, decltype(it->m)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(++i1)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*i1++)>::value));
// more practical
EXPECT_EQ (true, i1 == i2);
EXPECT_EQ (true, i1 != i3);
EXPECT_EQ (0, *i1);
EXPECT_EQ (0, it->m);
EXPECT_EQ (true, (++i1 == i3));
EXPECT_EQ (1, *i1++);
EXPECT_EQ (2, *i1);
}
// Legacy input iterator atomic
TEST(Tring_iterator, LegacyOutputIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (true, (std::is_assignable<decltype(*it), int>::value));
EXPECT_EQ (true, (std::is_assignable<decltype(*it++), int>::value));
// more practical
*it = 42;
EXPECT_EQ (42, A[0]);
*it++ = 7;
EXPECT_EQ (7, A[0]);
EXPECT_EQ (&A[1], it.iter());
}
// Legacy forward iterator atomic
TEST(Tring_iterator, LegacyForwardIterator_atomic)
{
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (0, *it++);
EXPECT_EQ (1, *it);
}
// Legacy bidirectional iterator atomic
TEST(Tring_iterator, LegacyBidirectionalIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it(A);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(--it)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it--)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(*it--)>::value));
// more practical
ring_iterator<int*, 10, true> i1(A), i2(A, 9);
EXPECT_EQ (9, *i2--); // check loop also
EXPECT_EQ (8, *i2);
EXPECT_EQ (0, *i1--); // check loop also
EXPECT_EQ (9, *i1);
}
// Legacy random access iterator atomic
TEST(Tring_iterator, LegacyRandomAccessIterator_atomic) {
int A[10] {0, 1, 2, 3, 4, 5, 6, 7, 8 , 9};
ring_iterator<int*, 10, true> it1(A), it2(A, 7);
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(it1 += 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it1 + 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(7 + it1)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>&, decltype(it1 -= 7)>::value));
EXPECT_EQ (true, (std::is_same<ring_iterator<int*, 10, true>, decltype(it1 - 7)>::value));
EXPECT_EQ (true, (std::is_same<std::ptrdiff_t, decltype(it1 - it2)>::value));
EXPECT_EQ (true, (std::is_same<int&, decltype(it1[7])>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 < it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 > it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 <= it2)>::value));
EXPECT_EQ (true, (std::is_same<bool, decltype(it1 >= it2)>::value));
// more practical
ring_iterator<int*, 10, true> i1(A), i2(A);
i1 += 7;
EXPECT_EQ (7, *i1);
i1 -= 7;
EXPECT_EQ (0, *i1);
i1 += 11;
EXPECT_EQ (1, *i1);
i1 -= 2;
EXPECT_EQ (9, *i1);
EXPECT_EQ (7, *(i2+7));
EXPECT_EQ (7, *(7+i2));
EXPECT_EQ (1, *(i2+11));
EXPECT_EQ (1, *(11+i2));
EXPECT_EQ (7, *(i1-2));
EXPECT_EQ (8, *(i2-2));
EXPECT_EQ (9, (i1 - i2));
EXPECT_EQ (1, (i2 - i1)); // loop
}
}

+ 274
- 0
test/tests/span.cpp Переглянути файл

@@ -0,0 +1,274 @@
/*!
* \file span.cpp
* \brief
* Unit tests for span
*
* \copyright Copyright (C) 2020 Christos Choutouridis <christos@choutouridis.net>
*
* <dl class=\"section copyright\"><dt>License</dt><dd>
* The MIT License (MIT)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
* </dd></dl>
*
*/
#include <cont/span.h>
#include <gtest/gtest.h>
#include <cont/deque.h>
#include <vector>
#include <type_traits>
// tests from https://github.com/tcbrindle/span/blob/master/test/test_span.cpp
namespace test_span {
using namespace tbx;
TEST (Tspan, default_constructors) {
EXPECT_EQ (true, ( std::is_nothrow_default_constructible<span<int>>::value));
EXPECT_EQ (true, ( std::is_nothrow_default_constructible<span<int, 0>>::value));
EXPECT_EQ (true, (!std::is_nothrow_default_constructible<span<int, 42>>::value));
constexpr span<int> s1{};
EXPECT_EQ (0UL, s1.size());
EXPECT_EQ (nullptr, s1.data());
EXPECT_EQ (s1.begin(), s1.end());
constexpr span<int, 0> s2{};
EXPECT_EQ (0UL, s2.size());
EXPECT_EQ (nullptr, s2.data());
EXPECT_EQ (s2.begin(), s2.end());
}
TEST (Tspan, pointer_constructors) {
// pointer length
EXPECT_EQ (true, (std::is_constructible<span<int>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int>, const int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<int, 42>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int, 42>, int*, int>::value));
EXPECT_EQ (true, (std::is_constructible<span<const int, 42>, const int*, int>::value));
int arr[] = {1, 2, 3};
// dynamic size
span<int> s1(arr, 3);
EXPECT_EQ (3UL, s1.size());
EXPECT_EQ (arr, s1.data());
EXPECT_EQ (std::begin(arr), s1.begin());
EXPECT_EQ (std::end(arr), s1.end());
// fixed size
span<int, 3> s2(arr, 3);
EXPECT_EQ (3UL, s2.size());
EXPECT_EQ (arr, s2.data());
EXPECT_EQ (std::begin(arr), s2.begin());
EXPECT_EQ (std::end(arr), s2.end());
// pointer pointer
EXPECT_EQ (true, (std::is_constructible<span<int>, int*, int*>::value));
EXPECT_EQ (true, (std::is_constructible<span<float>, float*, float*>::value));
EXPECT_EQ (true, (std::is_constructible<span<int, 42>, int*, int*>::value));
EXPECT_EQ (true, (std::is_constructible<span<float, 42>, float*, float*>::value));
// dynamic size
span<int> s3(arr, arr + 3);
EXPECT_EQ (3UL, s3.size());
EXPECT_EQ (arr, s3.data());
EXPECT_EQ (std::begin(arr), s3.begin());
EXPECT_EQ (std::end(arr), s3.end());
// fixed size
span<int, 3> s4(arr, arr + 3);
EXPECT_EQ (3UL, s4.size());
EXPECT_EQ (arr, s4.data());
EXPECT_EQ (std::begin(arr), s4.begin());
EXPECT_EQ (std::end(arr), s4.end());
}
TEST (Tspan, C_array_constructors) {
using int_array_t = int[3];
using float_array_t = float[3];
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int, 3>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, float_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, float_array_t>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, float_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, float_array_t&>::value));
int arr[] = {1, 2, 3};
// non-const dynamic size
span<int> s1{arr};
EXPECT_EQ (s1.size(), 3UL);
EXPECT_EQ (s1.data(), arr);
EXPECT_EQ (s1.begin(), std::begin(arr));
EXPECT_EQ (s1.end(), std::end(arr));
// non-const dynamic size
span<const int> s2{arr};
EXPECT_EQ (s2.size(), 3UL);
EXPECT_EQ (s2.data(), arr);
EXPECT_EQ (s2.begin(), std::begin(arr));
EXPECT_EQ (s2.end(), std::end(arr));
// non-const fixed size
span<int, 3> s3{arr};
EXPECT_EQ (s3.size(), 3UL);
EXPECT_EQ (s3.data(), arr);
EXPECT_EQ (s3.begin(), std::begin(arr));
EXPECT_EQ (s3.end(), std::end(arr));
// non-const fixed size
span<const int, 3> s4{arr};
EXPECT_EQ (s4.size(), 3UL);
EXPECT_EQ (s4.data(), arr);
EXPECT_EQ (s4.begin(), std::begin(arr));
EXPECT_EQ (s4.end(), std::end(arr));
}
TEST (Tspan, array_constructors) {
using int_array_t = std::array<int, 3>;
using float_array_t = std::array<float, 3>;
using zero_array_t = std::array<int, 0>;
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int>, float_array_t const&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<int, 3>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, float_array_t>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t&>::value));
EXPECT_EQ (true, ( std::is_nothrow_constructible<span<const int, 3>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, float_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 42>, float_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, int_array_t const&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<const int, 42>, float_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<int>, zero_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int>, const zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int>, zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int>, const zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<int, 0>, zero_array_t&>::value));
EXPECT_EQ (true, (!std::is_constructible<span<int, 0>, const zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int, 0>, zero_array_t&>::value));
EXPECT_EQ (true, ( std::is_constructible<span<const int, 0>, const zero_array_t&>::value));
int_array_t arr = {1, 2, 3};
// non-const, dynamic size
span<int> s1{arr};
EXPECT_EQ(s1.size(), 3UL);
EXPECT_EQ(s1.data(), arr.data());
EXPECT_EQ(s1.begin(), arr.data());
EXPECT_EQ(s1.end(), arr.data() + 3);
//const, dynamic size
span<int const> s2{arr};
EXPECT_EQ(s2.size(), 3UL);
EXPECT_EQ(s2.data(), arr.data());
EXPECT_EQ(s2.begin(), arr.data());
EXPECT_EQ(s2.end(), arr.data() + 3);
// non-const, static size
span<int, 3> s3{arr};
EXPECT_EQ(s3.size(), 3UL);
EXPECT_EQ(s3.data(), arr.data());
EXPECT_EQ(s3.begin(), arr.data());
EXPECT_EQ(s3.end(), arr.data() + 3);
// const, dynamic size
span<int const, 3> s4{arr};
EXPECT_EQ(s4.size(), 3UL);
EXPECT_EQ(s4.data(), arr.data());
EXPECT_EQ(s4.begin(), arr.data());
EXPECT_EQ(s4.end(), arr.data() + 3);
}
// TEST (Tspan, containter_constructors) {
// using container_t = tbx::deque<int, 3>;
//
// EXPECT_EQ (true, ( std::is_constructible<span<int>, container_t&>::value));
// EXPECT_EQ (true, (!std::is_constructible<span<int>, const container_t&>::value));
//
// EXPECT_EQ (true, ( std::is_constructible<span<const int>, container_t&>::value));
// EXPECT_EQ (true, ( std::is_constructible<span<const int>, const container_t&>::value));
//
// EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, container_t&>::value));
// EXPECT_EQ (true, (!std::is_constructible<span<int, 3>, const container_t&>::value));
//
// EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, container_t&>::value));
// EXPECT_EQ (true, (!std::is_constructible<span<const int, 3>, const container_t&>::value));
//
// container_t cont = {1, 2, 3};
// const container_t ccont = {1, 2, 3};
//
// // non-const, dynamic size
// span<int> s1(cont);
// EXPECT_EQ(s1.size(), 3UL);
// EXPECT_EQ(s1.data(), cont.data());
// EXPECT_EQ(s1.begin(), cont.data());
// EXPECT_EQ(s1.end(), cont.data() + 3);
//
//
// //const, dynamic size
// span<int const> s2(cont);
// EXPECT_EQ(s2.size(), 3UL);
// EXPECT_EQ(s2.data(), cont.data());
// EXPECT_EQ(s2.begin(), cont.data());
// EXPECT_EQ(s2.end(), cont.data() + 3);
//
// }
}

Завантаження…
Відмінити
Зберегти