|
- % === Problem 3b: Effect of Sampling Period Ts on Estimation Accuracy ===
-
- clear; close all;
-
- % True parameters
- m = 0.75;
- L = 1.25;
- c = 0.15;
- g = 9.81;
-
- mL2_true = m * L^2;
- mgL_true = m * g * L;
- theta_true = [mL2_true; c; mgL_true];
-
- % Parameters of input
- A0 = 4;
- omega = 2;
-
- % Time settings
- T_final = 20;
- dt = 1e-4;
- t_full = 0:dt:T_final;
-
- % Simulate system with very fine resolution
- odefun = @(t, x) [
- x(2);
- (1/(m*L^2)) * (A0*sin(omega*t) - c*x(2) - m*g*L*x(1))
- ];
- x0 = [0; 0];
- [t_sim, x_sim] = ode45(odefun, t_full, x0);
-
- % Sampling periods to test
- Ts_list = [0.01, 0.05, 0.1, 0.2, 0.5];
- n_cases = length(Ts_list);
- rel_errors_all = zeros(3, n_cases);
-
- for i = 1:n_cases
- Ts = Ts_list(i);
-
- % Resample at this Ts
- t_sampled = t_sim(1):Ts:t_sim(end);
- q = interp1(t_sim, x_sim(:,1), t_sampled);
- u = A0 * sin(omega * t_sampled);
-
- N = length(t_sampled);
-
- % Compute dq and ddq with central differences
- dq = zeros(N,1);
- ddq = zeros(N,1);
- for k = 2:N-1
- dq(k) = (q(k+1) - q(k-1)) / (2*Ts);
- ddq(k) = (q(k+1) - 2*q(k) + q(k-1)) / Ts^2;
- end
-
- % LS Estimation
- idx = 2:N-1; % Truncate to valid range (2:N-1)
- X = [ddq(idx), dq(idx), q(idx)'];
- y = u(idx).';
- theta_hat = (X' * X) \ (X' * y);
-
- rel_error = abs((theta_hat - theta_true) ./ theta_true) * 100;
- rel_errors_all(:, i) = rel_error;
-
- % Print
- fprintf('Ts = %.3f s → mL^2=%.4f (%.2f%%), c=%.4f (%.2f%%), mgL=%.4f (%.2f%%)\n', ...
- Ts, theta_hat(1), rel_error(1), ...
- theta_hat(2), rel_error(2), ...
- theta_hat(3), rel_error(3));
- end
-
- % === Plot ===
- figure('Name', 'Problem 3b - Effect of Sampling Period', 'Position', [100, 100, 1000, 600]);
- plot(Ts_list, rel_errors_all', '-o', 'LineWidth', 2, 'MarkerSize', 4);
- legend({'mL^2', 'c', 'mgL'}, 'Location', 'northwest');
- xlabel('Sampling Period Ts [sec]');
- ylabel('Relative Error [%]');
- title('Effect of Ts on Parameter Estimation');
- grid on;
-
- saveas(gcf, 'output/Prob3b_SamplingPeriodEffect.png');
|