115 lignes
3.6 KiB
Matlab
Brut Annotations Historique

Ce fichier contient des caractères Unicode ambigus.

Ce fichier contient des caractères Unicode qui peuvent être confondus avec d'autres caractères. Si vous pensez que c'est intentionnel, vous pouvez ignorer cet avertissement. Utilisez le bouton Échappe pour les dévoiler.

% === Problem 3a: Effect of Noise on Parameter Estimation ===
clear; close all;
% True system parameters
m = 0.75;
L = 1.25;
c = 0.15;
g = 9.81;
mL2_true = m * L^2;
mgL_true = m * g * L;
theta_true = [mL2_true; c; mgL_true];
% Load clean data
data = readtable('output/problem1_data.csv');
t = data.t;
q_clean = data.q;
u = data.u;
Ts = t(2) - t(1);
N = length(t);
% Derivatives from clean q
dq_clean = zeros(N,1);
ddq_clean = zeros(N,1);
for k = 2:N-1
dq_clean(k) = (q_clean(k+1) - q_clean(k-1)) / (2*Ts);
ddq_clean(k) = (q_clean(k+1) - 2*q_clean(k) + q_clean(k-1)) / Ts^2;
end
% LS estimation on clean data
X_clean = [ddq_clean, dq_clean, q_clean];
theta_hat_clean = (X_clean' * X_clean) \ (X_clean' * u);
rel_error_clean = abs((theta_hat_clean - theta_true) ./ theta_true) * 100;
% Reconstruct q̂_clean
q_hat_clean = zeros(N, 1);
dq_hat_clean = zeros(N, 1);
q_hat_clean(1) = q_clean(1);
dq_hat_clean(1) = dq_clean(1);
for k = 2:N
ddq_hat_clean_k = (1/theta_hat_clean(1)) * ...
(u(k-1) - theta_hat_clean(2)*dq_clean(k-1) - theta_hat_clean(3)*q_clean(k-1));
dq_hat_clean(k) = dq_hat_clean(k-1) + Ts * ddq_hat_clean_k;
q_hat_clean(k) = q_hat_clean(k-1) + Ts * dq_hat_clean(k-1);
end
% === Loop over noise levels ===
noise_levels = [0.001, 0.0025];
for i = 1:length(noise_levels)
noise_std = noise_levels(i);
q_noisy = q_clean + noise_std * randn(size(q_clean));
% Derivatives from noisy q
dq_noisy = zeros(N,1);
ddq_noisy = zeros(N,1);
for k = 2:N-1
dq_noisy(k) = (q_noisy(k+1) - q_noisy(k-1)) / (2*Ts);
ddq_noisy(k) = (q_noisy(k+1) - 2*q_noisy(k) + q_noisy(k-1)) / Ts^2;
end
% LS estimation on noisy data
X_noisy = [ddq_noisy, dq_noisy, q_noisy];
theta_hat_noisy = (X_noisy' * X_noisy) \ (X_noisy' * u);
rel_error_noisy = abs((theta_hat_noisy - theta_true) ./ theta_true) * 100;
% Reconstruct q̂_noisy
q_hat_noisy = zeros(N,1);
dq_hat_noisy = zeros(N,1);
q_hat_noisy(1) = q_noisy(1);
dq_hat_noisy(1) = dq_noisy(1);
for k = 2:N
ddq_hat_noisy_k = (1/theta_hat_noisy(1)) * ...
(u(k-1) - theta_hat_noisy(2)*dq_noisy(k-1) - theta_hat_noisy(3)*q_noisy(k-1));
dq_hat_noisy(k) = dq_hat_noisy(k-1) + Ts * ddq_hat_noisy_k;
q_hat_noisy(k) = q_hat_noisy(k-1) + Ts * dq_hat_noisy(k-1);
end
% Print results
fprintf('\n--- Noise std = %.4f ---\n', noise_std);
fprintf('Clean: mL2=%.4f (%.2f%%), c=%.4f (%.2f%%), mgL=%.4f (%.2f%%)\n', ...
theta_hat_clean(1), rel_error_clean(1), ...
theta_hat_clean(2), rel_error_clean(2), ...
theta_hat_clean(3), rel_error_clean(3));
fprintf('Noisy: mL2=%.4f (%.2f%%), c=%.4f (%.2f%%), mgL=%.4f (%.2f%%)\n', ...
theta_hat_noisy(1), rel_error_noisy(1), ...
theta_hat_noisy(2), rel_error_noisy(2), ...
theta_hat_noisy(3), rel_error_noisy(3));
% === Combined plot ===
figure('Name', sprintf('Noise std = %.4f', noise_std), 'Position', [100, 100, 1000, 800]);
subplot(2,1,1);
plot(t, q_clean, 'b', ...
t, q_hat_clean, 'g--', ...
t, q_hat_noisy, 'r:');
legend('Actual q(t)', 'Estimated (clean)', 'Estimated (noisy)');
title(sprintf('Estimated Output (σ = %.4f)', noise_std));
ylabel('q(t) [rad]');
grid on;
subplot(2,1,2);
bar([rel_error_clean, rel_error_noisy]);
set(gca, 'XTickLabel', {'mL^2', 'c', 'mgL'});
legend({'No Noise', sprintf('With Noise (σ=%.4f)', noise_std)}, 'Location', 'northwest');
ylabel('Relative Error [%]');
title('Estimation Error');
grid on;
% Save figure
filename = sprintf('output/Prob3a_NoiseStd%.4f.png', noise_std);
saveas(gcf, filename);
end