|
- % === Problem 2: Parameter Estimation using Least Squares ===
-
- % True data for comparison
- m = 0.75;
- L = 1.25;
- c_true = 0.15;
- g = 9.81;
-
- mL2_true = m * L^2;
- mgL_true = m * g * L;
-
- theta_true = [mL2_true; c_true; mgL_true];
-
- % Load sampled data from Problem 1
- data = readtable('output/problem1_data.csv');
- t = data.t;
- q = data.q;
- dq = data.dq;
- ddq = data.ddq;
- u = data.u;
-
- % Build regression matrix X and target vector y = u
- X = [ddq, dq, q]; % columns correspond to coefficients of [mL^2, c, mgL]
- y = u;
-
- % Least Squares estimation: theta_hat = [mL^2; c; mgL]
- theta_hat = (X' * X) \ (X' * y);
-
- % Extract individual parameters (optional interpretation)
- mL2_est = theta_hat(1);
- c_est = theta_hat(2);
- mgL_est = theta_hat(3);
-
- % Reconstruct ddq_hat using the estimated parameters
- ddq_hat = (1 / mL2_est) * (u - c_est * dq - mgL_est * q);
-
- % Numerical integration to recover dq̂(t) and q̂(t)
- Ts = t(2) - t(1);
- N = length(t);
- dq_hat = zeros(N,1);
- q_hat = zeros(N,1);
-
- % Initial conditions
- dq_hat(1) = dq(1);
- q_hat(1) = q(1);
-
- for k = 2:N
- dq_hat(k) = dq_hat(k-1) + Ts * ddq_hat(k-1);
- q_hat(k) = q_hat(k-1) + Ts * dq_hat(k-1);
- end
-
- % Estimation error
- e_q = q - q_hat;
-
- % === Plots ===
- figure('Name', 'Problem 2 - LS Estimation', 'Position', [100, 100, 1280, 800]);
-
- subplot(3,1,1);
- plot(t, q, 'b', t, q_hat, 'r--');
- legend('q(t)', 'q̂(t)');
- title('Actual vs Estimated Angle');
- ylabel('Angle [rad]');
- grid on;
-
- subplot(3,1,2);
- plot(t, e_q, 'k');
- title('Estimation Error e_q(t) = q(t) - q̂(t)');
- ylabel('Error [rad]');
- grid on;
-
- subplot(3,1,3);
- bar(["mL^2", "c", "mgL"], theta_hat);
- title('Estimated Parameters');
- ylabel('Value');
- grid on;
- saveas(gcf, 'output/Prob2_20s_Ts0.1.png');
-
- fprintf(' Actual Parameters: mL^2=%f, c=%f, mgL=%f\n', theta_true(1), theta_true(2), theta_true(3));
- fprintf('Estimated Parameters: mL^2=%f, c=%f, mgL=%f\n', theta_hat(1), theta_hat(2), theta_hat(3));
|