|
- %
- % Problem 1c: Effect of bounded sinusoidal disturbance on measurement x(t)
- %
- clear
-
- % True system parameters
- m_true = 1.315;
- b_true = 0.225;
- k_true = 0.725;
-
- % Simulation parameters
- Ts = 0.001;
- T_total = 40;
- t_full = 0:Ts:T_total;
-
- % Generate full input signal
- u_full = 2.5 * sin(t_full);
-
- % Simulate the true system
- x = zeros(1, length(t_full));
- dx = zeros(1, length(t_full));
- ddx = zeros(1, length(t_full));
- x(1) = 0; dx(1) = 0;
- for k = 1:length(t_full)-1
- f = @(x_, dx_, u_) (1/m_true) * (u_ - b_true * dx_ - k_true * x_);
- k1 = f(x(k), dx(k), u_full(k));
- k2 = f(x(k) + Ts/2 * dx(k), dx(k) + Ts/2 * k1, u_full(k));
- k3 = f(x(k) + Ts/2 * dx(k), dx(k) + Ts/2 * k2, u_full(k));
- k4 = f(x(k) + Ts * dx(k), dx(k) + Ts * k3, u_full(k));
- ddx(k) = k1;
- dx(k+1) = dx(k) + Ts/6 * (k1 + 2*k2 + 2*k3 + k4);
- x(k+1) = x(k) + Ts * dx(k);
- end
- ddx(1:end-1) = diff(dx) / Ts;
- ddx(end) = ddx(end-1);
-
- % Initial estimation (clean) using Lyapunov
- T_total = 40;
- index_limit = round(T_total / Ts);
- t = t_full(1:index_limit);
- N = length(t);
- u = u_full(1:index_limit);
- x = x(1:index_limit);
- dx = dx(1:index_limit);
- ddx = ddx(1:index_limit);
-
- phi_all = [ddx; dx; x];
- theta_hat = zeros(3, N);
- theta_hat(:, 1) = [1; 1; 1];
- gamma = 0.66;
- for k = 1:N-1
- phi = phi_all(:,k);
- y = u(k);
- y_hat = theta_hat(:,k)' * phi;
- e = y - y_hat;
- theta_hat(:,k+1) = theta_hat(:,k) + Ts * gamma * e * phi;
- end
-
- % Disturbance settings
- eta0 = 0.1;
- f0 = 0.5;
- eta = eta0 * sin(2 * pi * f0 * t);
- x_noisy = x + eta;
-
- % Use clean derivatives, noisy position
- phi_all_noise = [ddx; dx; x_noisy];
- theta_hat_noise = zeros(3, N);
- theta_hat_noise(:, 1) = [1; 1; 1];
-
- for k = 1:N-1
- phi = phi_all_noise(:,k);
- y = u(k);
- y_hat = theta_hat_noise(:,k)' * phi;
- e = y - y_hat;
- theta_hat_noise(:,k+1) = theta_hat_noise(:,k) + Ts * gamma * e * phi;
- end
-
- fprintf('\n1c: Final estimates with disturbance:\n');
- fprintf('Estimated m: %.4f, b: %.4f, k: %.4f\n', ...
- theta_hat_noise(1,end), theta_hat_noise(2,end), theta_hat_noise(3,end));
-
- figure('Name', '1c - Parameter Estimation with Disturbance', 'Position', [100, 100, 1280, 860]);
- sgtitle(sprintf('Lyapunov Estimation with Disturbance | η_0 = %.2f', eta0));
-
- subplot(3,1,1);
- plot(t, theta_hat(1,:), 'b', t, theta_hat_noise(1,:), '--b', 'LineWidth', 1.2);
- ylabel('m(t)'); grid on; title('Μάζα');
- legend('Clear', 'With noise');
-
- subplot(3,1,2);
- plot(t, theta_hat(2,:), 'r', t, theta_hat_noise(2,:), '--r', 'LineWidth', 1.2);
- ylabel('b(t)'); grid on; title('Απόσβεση');
- legend('Clear', 'With noise');
-
- subplot(3,1,3);
- plot(t, theta_hat(3,:), 'k', t, theta_hat_noise(3,:), '--k', 'LineWidth', 1.2);
- ylabel('k(t)'); xlabel('t [s]'); grid on; title('Ελαστικότητα');
- legend('Clear', 'With noise');
-
- if ~exist('output', 'dir')
- mkdir('output');
- end
- saveas(gcf, sprintf('output/Prob1c_disturbance_eta%.2f.png', eta0));
|