|
- %
- % Problem 1b: Lyapunov-based Parameter Estimation
- %
- clear
-
- % True system parameters
- m_true = 1.315;
- b_true = 0.225;
- k_true = 0.725;
-
- % Simulation parameters
- Ts = 0.001;
- T_total = 40;
- t = 0:Ts:T_total;
- N = length(t);
-
- % Gamma setup
- gamma = 0.66;
- fprintf('Using gamma = %.4f (Lyapunov Based Estimation)\n', gamma);
-
- % Define sine input only (as per problem statement)
- u = 2.5 * sin(t);
-
- % Simulate the true system
- x = zeros(1, N);
- dx = zeros(1, N);
- ddx = zeros(1, N);
- x(1) = 0; dx(1) = 0;
- for k = 1:N-1
- f = @(x_, dx_, u_) (1/m_true) * (u_ - b_true * dx_ - k_true * x_);
- k1 = f(x(k), dx(k), u(k));
- k2 = f(x(k) + Ts/2 * dx(k), dx(k) + Ts/2 * k1, u(k));
- k3 = f(x(k) + Ts/2 * dx(k), dx(k) + Ts/2 * k2, u(k));
- k4 = f(x(k) + Ts * dx(k), dx(k) + Ts * k3, u(k));
- ddx(k) = k1;
- dx(k+1) = dx(k) + Ts/6 * (k1 + 2*k2 + 2*k3 + k4);
- x(k+1) = x(k) + Ts * dx(k);
- end
- ddx(1:end-1) = diff(dx) / Ts;
- ddx(end) = ddx(end-1);
-
- % Estimation using Lyapunov structure
- phi_all = [ddx; dx; x]; % shape: [3 x N]
- theta_hat = zeros(3, N);
- theta_hat(:, 1) = [1; 1; 1];
-
- for k = 1:N-1
- phi = phi_all(:,k);
- y = u(k);
- y_hat = theta_hat(:,k)' * phi;
- e = y - y_hat;
- theta_hat(:,k+1) = theta_hat(:,k) + Ts * gamma * e * phi;
- end
-
- % Final estimates
- fprintf('\nFinal estimates:\n');
- fprintf('Estimated m: %.4f, b: %.4f, k: %.4f\n', theta_hat(1,end), theta_hat(2,end), theta_hat(3,end));
-
- % Plot results
- figure('Name', 'Lyapunov Estimation (notes form)', 'Position', [100, 100, 1280, 860]);
- sgtitle(sprintf('Input: sine | Gamma = %.3f | Lyapunov', gamma), 'FontWeight', 'bold');
-
- subplot(3,1,1);
- plot(t, theta_hat(1,:), 'b', 'LineWidth', 1.5);
- ylabel('$$\hat{m}(t)$$ [kg]', 'Interpreter', 'latex');
- grid on; title('Εκτίμηση μάζας');
-
- subplot(3,1,2);
- plot(t, theta_hat(2,:), 'r', 'LineWidth', 1.5);
- ylabel('$$\hat{b}(t)$$ [Ns/m]', 'Interpreter', 'latex');
- grid on; title('Εκτίμηση απόσβεσης');
-
- subplot(3,1,3);
- plot(t, theta_hat(3,:), 'k', 'LineWidth', 1.5);
- ylabel('$$\hat{k}(t)$$ [N/m]', 'Interpreter', 'latex');
- xlabel('t [sec]');
- grid on; title('Εκτίμηση ελαστικότητας');
-
- if ~exist('output', 'dir')
- mkdir('output');
- end
- saveas(gcf, sprintf('output/Prob1b_lyapunov_gamma%.3f_%ds.png', gamma, T_total));
-
- % Reconstruct estimated output x_hat(t)
- x_hat = zeros(1, N);
- dx_hat = zeros(1, N);
- dx_hat(1) = 0;
- for k = 1:N-1
- m_hat = theta_hat(1,k);
- b_hat = theta_hat(2,k);
- k_hat = theta_hat(3,k);
- ddx_hat = (u(k) - b_hat * dx_hat(k) - k_hat * x_hat(k)) / m_hat;
- dx_hat(k+1) = dx_hat(k) + Ts * ddx_hat;
- x_hat(k+1) = x_hat(k) + Ts * dx_hat(k);
- end
- e_x = x - x_hat;
-
- % Plot extra figure with x, x_hat and e_x
- figure('Name', 'System Response vs Estimation', 'Position', [100, 100, 1280, 860]);
- sgtitle(sprintf('System Response and Error | Gamma = %.3f', gamma), 'FontWeight', 'bold');
-
- subplot(2,1,1);
- plot(t, x, 'b', t, x_hat, '--r', 'LineWidth', 1.5);
- legend('x(t)', 'x_{hat}(t)', 'Location', 'Best');
- ylabel('Θέση [m]');
- grid on; title('Αντίδραση Συστήματος και Εκτίμηση');
-
- subplot(2,1,2);
- plot(t, e_x, 'k', 'LineWidth', 1.5);
- ylabel('e_x(t)');
- grid on; title('Σφάλμα θέσης: x(t) - x_{hat}(t)');
-
-
-
- saveas(gcf, sprintf('output/Prob1b_extrastates_gamma%.3f_%ds.png', gamma, T_total));
|