|
- %
- % Problem 1a: Gradient estimation for mass-spring-damper system (Exercise 1a)
- %
- clear
-
- % True system parameters
- m_true = 1.315;
- b_true = 0.225;
- k_true = 0.725;
-
- % Simulation parameters
- Ts = 0.001;
- T_total = 30;
- t = 0:Ts:T_total;
- N = length(t);
-
- % Gamma setup
- gamma = 0.33;
- use_normalization = true; % Set to false to disable normalization
-
- fprintf('Using gamma = %.4f\n', gamma);
- if use_normalization
- fprintf('Using normalized gradient update.\n');
- else
- fprintf('Using unnormalized gradient update.\n');
- end
-
- % Define both input cases
- input_cases = {...
- struct('name', 'constant', 'u', 2.5 * ones(1, N)), ...
- struct('name', 'sine', 'u', 2.5 * sin(t)) ...
- };
-
- fprintf('True m: %.4f, b: %.4f, k: %.4f\n', m_true, b_true, k_true);
-
- for case_idx = 1:length(input_cases)
- input_case = input_cases{case_idx};
- u = input_case.u;
-
- % Preallocate state variables
- x = zeros(1, N);
- dx = zeros(1, N);
- ddx = zeros(1, N);
-
- % Initial conditions
- x(1) = 0;
- dx(1) = 0;
-
- % Simulate true system using RK4
- for k = 1:N-1
- f = @(x_, dx_, u_) (1/m_true) * (u_ - b_true * dx_ - k_true * x_);
- k1 = f(x(k), dx(k), u(k));
- k2 = f(x(k) + Ts/2 * dx(k), dx(k) + Ts/2 * k1, u(k));
- k3 = f(x(k) + Ts/2 * dx(k), dx(k) + Ts/2 * k2, u(k));
- k4 = f(x(k) + Ts * dx(k), dx(k) + Ts * k3, u(k));
- ddx(k) = k1; % store first derivative (for later reuse)
- dx(k+1) = dx(k) + Ts/6 * (k1 + 2*k2 + 2*k3 + k4);
- x(k+1) = x(k) + Ts * dx(k);
- end
-
- % Approximate acceleration using finite differences
- ddx(1:end-1) = diff(dx) / Ts;
- ddx(end) = ddx(end-1); % replicate last value
-
- % Gradient estimation setup
- theta_hat = zeros(3, N); % rows: [m; b; k]
- theta_hat(:, 1) = [1; 1; 1]; % initial guesses
-
- % Run gradient estimator
- for k = 1:N-1
- u_vec = [ddx(k); dx(k); x(k)];
- y = u(k);
- y_hat = theta_hat(:, k)' * u_vec;
- e = y - y_hat;
- if use_normalization
- norm_factor = 1 + norm(u_vec)^2;
- theta_hat(:, k+1) = theta_hat(:, k) + Ts * gamma * (e / norm_factor) * u_vec;
- else
- theta_hat(:, k+1) = theta_hat(:, k) + Ts * gamma * e * u_vec;
- end
- end
-
- % Print final estimated values to console
- fprintf('\nFinal estimates for input: %s\n', input_case.name);
- fprintf('Estimated m: %.4f, b: %.4f, k: %.4f\n', theta_hat(1,end), theta_hat(2,end), theta_hat(3,end));
-
- % Plot estimated parameters
- figure('Name', ['Estimated Parameters - ' input_case.name], 'Position', [100, 100, 1280, 860]);
- normalization_text = ternary(use_normalization, 'Normalized', 'Unnormalized');
- sgtitle(sprintf('Input: %s | Gamma = %.3f | %s', input_case.name, gamma, normalization_text), 'FontWeight', 'bold');
-
- subplot(3,1,1);
- plot(t, theta_hat(1,:), 'b', 'LineWidth', 1.5);
- ylabel('$$\hat{m}(t)$$ [kg]', 'Interpreter', 'latex');
- grid on;
- title('Εκτίμηση μάζας');
-
- subplot(3,1,2);
- plot(t, theta_hat(2,:), 'r', 'LineWidth', 1.5);
- ylabel('$$\hat{b}(t)$$ [Ns/m]', 'Interpreter', 'latex');
- grid on;
- title('Εκτίμηση απόσβεσης');
-
- subplot(3,1,3);
- plot(t, theta_hat(3,:), 'k', 'LineWidth', 1.5);
- ylabel('$$\hat{k}(t)$$ [N/m]', 'Interpreter', 'latex');
- xlabel('t [sec]');
- grid on;
- title('Εκτίμηση ελαστικότητας');
-
- % Save figure
- if ~exist('output', 'dir')
- mkdir('output');
- end
- saveas(gcf, sprintf('output/Prob1a_estimation_%s_gamma%.3f_%s_%ds.png', input_case.name, gamma, normalization_text, T_total));
- end
-
- function out = ternary(cond, val_true, val_false)
- if cond
- out = val_true;
- else
- out = val_false;
- end
- end
|