% === Problem 3c: Effect of Input Amplitude A0 on Estimation Accuracy === clear; close all; % True system parameters m = 0.75; L = 1.25; c = 0.15; g = 9.81; mL2_true = m * L^2; mgL_true = m * g * L; theta_true = [mL2_true; c; mgL_true]; % Simulation settings omega = 2; % input frequency Ts = 0.1; % sampling period dt = 1e-4; % integration resolution T_final = 20; % simulation time % Amplitudes to test A0_list = [1, 2, 4, 6, 8, 16]; n_cases = length(A0_list); rel_errors_all = zeros(3, n_cases); for i = 1:n_cases A0 = A0_list(i); % Simulate system t_full = 0:dt:T_final; odefun = @(t, x) [ x(2); (1/(m*L^2)) * (A0*sin(omega*t) - c*x(2) - m*g*L*x(1)) ]; x0 = [0; 0]; [t_sim, x_sim] = ode45(odefun, t_full, x0); % Resample at Ts t_sampled = t_sim(1):Ts:t_sim(end); q = interp1(t_sim, x_sim(:,1), t_sampled); u = A0 * sin(omega * t_sampled); N = length(t_sampled); % Estimate derivatives dq = zeros(N,1); ddq = zeros(N,1); for k = 2:N-1 dq(k) = (q(k+1) - q(k-1)) / (2*Ts); ddq(k) = (q(k+1) - 2*q(k) + q(k-1)) / Ts^2; end % LS Estimation idx = 2:N-1; X = [ddq(idx), dq(idx), q(idx)']; y = u(idx).'; theta_hat = (X' * X) \ (X' * y); rel_error = abs((theta_hat - theta_true) ./ theta_true) * 100; rel_errors_all(:, i) = rel_error; % Print fprintf('A0 = %d → mL^2=%.4f (%.2f%%), c=%.4f (%.2f%%), mgL=%.4f (%.2f%%)\n', ... A0, theta_hat(1), rel_error(1), ... theta_hat(2), rel_error(2), ... theta_hat(3), rel_error(3)); end % === Plot === figure('Name', 'Problem 3c - Effect of A0', 'Position', [100, 100, 1000, 600]); plot(A0_list, rel_errors_all', '-o', 'LineWidth', 2, 'MarkerSize', 4); legend({'mL^2', 'c', 'mgL'}, 'Location', 'northeast'); xlabel('Input Amplitude A_0'); ylabel('Relative Error [%]'); title('Effect of Input Amplitude on Parameter Estimation'); grid on; ylim([0 1.1]); saveas(gcf, 'output/Prob3c_AmplitudeEffect.png');