A bundled STM32F10x Std Periph and CMSIS library
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 
 
 
 

7539 lignes
238 KiB

  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
  3. *
  4. * $Date: 12. March 2014
  5. * $Revision: V1.4.4
  6. *
  7. * Project: CMSIS DSP Library
  8. * Title: arm_math.h
  9. *
  10. * Description: Public header file for CMSIS DSP Library
  11. *
  12. * Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
  13. *
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. * - Redistributions of source code must retain the above copyright
  18. * notice, this list of conditions and the following disclaimer.
  19. * - Redistributions in binary form must reproduce the above copyright
  20. * notice, this list of conditions and the following disclaimer in
  21. * the documentation and/or other materials provided with the
  22. * distribution.
  23. * - Neither the name of ARM LIMITED nor the names of its contributors
  24. * may be used to endorse or promote products derived from this
  25. * software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.
  39. * -------------------------------------------------------------------- */
  40. /**
  41. \mainpage CMSIS DSP Software Library
  42. *
  43. * Introduction
  44. * ------------
  45. *
  46. * This user manual describes the CMSIS DSP software library,
  47. * a suite of common signal processing functions for use on Cortex-M processor based devices.
  48. *
  49. * The library is divided into a number of functions each covering a specific category:
  50. * - Basic math functions
  51. * - Fast math functions
  52. * - Complex math functions
  53. * - Filters
  54. * - Matrix functions
  55. * - Transforms
  56. * - Motor control functions
  57. * - Statistical functions
  58. * - Support functions
  59. * - Interpolation functions
  60. *
  61. * The library has separate functions for operating on 8-bit integers, 16-bit integers,
  62. * 32-bit integer and 32-bit floating-point values.
  63. *
  64. * Using the Library
  65. * ------------
  66. *
  67. * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
  68. * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
  69. * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
  70. * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
  71. * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
  72. * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
  73. * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
  74. * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
  75. * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
  76. *
  77. * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
  78. * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
  79. * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
  80. * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
  81. * ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
  82. *
  83. * Examples
  84. * --------
  85. *
  86. * The library ships with a number of examples which demonstrate how to use the library functions.
  87. *
  88. * Toolchain Support
  89. * ------------
  90. *
  91. * The library has been developed and tested with MDK-ARM version 4.60.
  92. * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
  93. *
  94. * Building the Library
  95. * ------------
  96. *
  97. * The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
  98. * - arm_cortexM_math.uvproj
  99. *
  100. *
  101. * The libraries can be built by opening the arm_cortexM_math.uvproj project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
  102. *
  103. * Pre-processor Macros
  104. * ------------
  105. *
  106. * Each library project have differant pre-processor macros.
  107. *
  108. * - UNALIGNED_SUPPORT_DISABLE:
  109. *
  110. * Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
  111. *
  112. * - ARM_MATH_BIG_ENDIAN:
  113. *
  114. * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
  115. *
  116. * - ARM_MATH_MATRIX_CHECK:
  117. *
  118. * Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
  119. *
  120. * - ARM_MATH_ROUNDING:
  121. *
  122. * Define macro ARM_MATH_ROUNDING for rounding on support functions
  123. *
  124. * - ARM_MATH_CMx:
  125. *
  126. * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
  127. * and ARM_MATH_CM0 for building library on cortex-M0 target, ARM_MATH_CM0PLUS for building library on cortex-M0+ target.
  128. *
  129. * - __FPU_PRESENT:
  130. *
  131. * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
  132. *
  133. * <hr>
  134. * CMSIS-DSP in ARM::CMSIS Pack
  135. * -----------------------------
  136. *
  137. * The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
  138. * |File/Folder |Content |
  139. * |------------------------------|------------------------------------------------------------------------|
  140. * |\b CMSIS\\Documentation\\DSP | This documentation |
  141. * |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
  142. * |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
  143. * |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
  144. *
  145. * <hr>
  146. * Revision History of CMSIS-DSP
  147. * ------------
  148. * Please refer to \ref ChangeLog_pg.
  149. *
  150. * Copyright Notice
  151. * ------------
  152. *
  153. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
  154. */
  155. /**
  156. * @defgroup groupMath Basic Math Functions
  157. */
  158. /**
  159. * @defgroup groupFastMath Fast Math Functions
  160. * This set of functions provides a fast approximation to sine, cosine, and square root.
  161. * As compared to most of the other functions in the CMSIS math library, the fast math functions
  162. * operate on individual values and not arrays.
  163. * There are separate functions for Q15, Q31, and floating-point data.
  164. *
  165. */
  166. /**
  167. * @defgroup groupCmplxMath Complex Math Functions
  168. * This set of functions operates on complex data vectors.
  169. * The data in the complex arrays is stored in an interleaved fashion
  170. * (real, imag, real, imag, ...).
  171. * In the API functions, the number of samples in a complex array refers
  172. * to the number of complex values; the array contains twice this number of
  173. * real values.
  174. */
  175. /**
  176. * @defgroup groupFilters Filtering Functions
  177. */
  178. /**
  179. * @defgroup groupMatrix Matrix Functions
  180. *
  181. * This set of functions provides basic matrix math operations.
  182. * The functions operate on matrix data structures. For example,
  183. * the type
  184. * definition for the floating-point matrix structure is shown
  185. * below:
  186. * <pre>
  187. * typedef struct
  188. * {
  189. * uint16_t numRows; // number of rows of the matrix.
  190. * uint16_t numCols; // number of columns of the matrix.
  191. * float32_t *pData; // points to the data of the matrix.
  192. * } arm_matrix_instance_f32;
  193. * </pre>
  194. * There are similar definitions for Q15 and Q31 data types.
  195. *
  196. * The structure specifies the size of the matrix and then points to
  197. * an array of data. The array is of size <code>numRows X numCols</code>
  198. * and the values are arranged in row order. That is, the
  199. * matrix element (i, j) is stored at:
  200. * <pre>
  201. * pData[i*numCols + j]
  202. * </pre>
  203. *
  204. * \par Init Functions
  205. * There is an associated initialization function for each type of matrix
  206. * data structure.
  207. * The initialization function sets the values of the internal structure fields.
  208. * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
  209. * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
  210. *
  211. * \par
  212. * Use of the initialization function is optional. However, if initialization function is used
  213. * then the instance structure cannot be placed into a const data section.
  214. * To place the instance structure in a const data
  215. * section, manually initialize the data structure. For example:
  216. * <pre>
  217. * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
  218. * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
  219. * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
  220. * </pre>
  221. * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
  222. * specifies the number of columns, and <code>pData</code> points to the
  223. * data array.
  224. *
  225. * \par Size Checking
  226. * By default all of the matrix functions perform size checking on the input and
  227. * output matrices. For example, the matrix addition function verifies that the
  228. * two input matrices and the output matrix all have the same number of rows and
  229. * columns. If the size check fails the functions return:
  230. * <pre>
  231. * ARM_MATH_SIZE_MISMATCH
  232. * </pre>
  233. * Otherwise the functions return
  234. * <pre>
  235. * ARM_MATH_SUCCESS
  236. * </pre>
  237. * There is some overhead associated with this matrix size checking.
  238. * The matrix size checking is enabled via the \#define
  239. * <pre>
  240. * ARM_MATH_MATRIX_CHECK
  241. * </pre>
  242. * within the library project settings. By default this macro is defined
  243. * and size checking is enabled. By changing the project settings and
  244. * undefining this macro size checking is eliminated and the functions
  245. * run a bit faster. With size checking disabled the functions always
  246. * return <code>ARM_MATH_SUCCESS</code>.
  247. */
  248. /**
  249. * @defgroup groupTransforms Transform Functions
  250. */
  251. /**
  252. * @defgroup groupController Controller Functions
  253. */
  254. /**
  255. * @defgroup groupStats Statistics Functions
  256. */
  257. /**
  258. * @defgroup groupSupport Support Functions
  259. */
  260. /**
  261. * @defgroup groupInterpolation Interpolation Functions
  262. * These functions perform 1- and 2-dimensional interpolation of data.
  263. * Linear interpolation is used for 1-dimensional data and
  264. * bilinear interpolation is used for 2-dimensional data.
  265. */
  266. /**
  267. * @defgroup groupExamples Examples
  268. */
  269. #ifndef _ARM_MATH_H
  270. #define _ARM_MATH_H
  271. #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
  272. #if defined(ARM_MATH_CM7)
  273. #include "core_cm7.h"
  274. #elif defined (ARM_MATH_CM4)
  275. #include "core_cm4.h"
  276. #elif defined (ARM_MATH_CM3)
  277. #include "core_cm3.h"
  278. #elif defined (ARM_MATH_CM0)
  279. #include "core_cm0.h"
  280. #define ARM_MATH_CM0_FAMILY
  281. #elif defined (ARM_MATH_CM0PLUS)
  282. #include "core_cm0plus.h"
  283. #define ARM_MATH_CM0_FAMILY
  284. #else
  285. #error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
  286. #endif
  287. #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
  288. #include "string.h"
  289. #include "math.h"
  290. #ifdef __cplusplus
  291. extern "C"
  292. {
  293. #endif
  294. /**
  295. * @brief Macros required for reciprocal calculation in Normalized LMS
  296. */
  297. #define DELTA_Q31 (0x100)
  298. #define DELTA_Q15 0x5
  299. #define INDEX_MASK 0x0000003F
  300. #ifndef PI
  301. #define PI 3.14159265358979f
  302. #endif
  303. /**
  304. * @brief Macros required for SINE and COSINE Fast math approximations
  305. */
  306. #define FAST_MATH_TABLE_SIZE 512
  307. #define FAST_MATH_Q31_SHIFT (32 - 10)
  308. #define FAST_MATH_Q15_SHIFT (16 - 10)
  309. #define CONTROLLER_Q31_SHIFT (32 - 9)
  310. #define TABLE_SIZE 256
  311. #define TABLE_SPACING_Q31 0x400000
  312. #define TABLE_SPACING_Q15 0x80
  313. /**
  314. * @brief Macros required for SINE and COSINE Controller functions
  315. */
  316. /* 1.31(q31) Fixed value of 2/360 */
  317. /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
  318. #define INPUT_SPACING 0xB60B61
  319. /**
  320. * @brief Macro for Unaligned Support
  321. */
  322. #ifndef UNALIGNED_SUPPORT_DISABLE
  323. #define ALIGN4
  324. #else
  325. #if defined (__GNUC__)
  326. #define ALIGN4 __attribute__((aligned(4)))
  327. #else
  328. #define ALIGN4 __align(4)
  329. #endif
  330. #endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
  331. /**
  332. * @brief Error status returned by some functions in the library.
  333. */
  334. typedef enum
  335. {
  336. ARM_MATH_SUCCESS = 0, /**< No error */
  337. ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
  338. ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
  339. ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
  340. ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
  341. ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
  342. ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
  343. } arm_status;
  344. /**
  345. * @brief 8-bit fractional data type in 1.7 format.
  346. */
  347. typedef int8_t q7_t;
  348. /**
  349. * @brief 16-bit fractional data type in 1.15 format.
  350. */
  351. typedef int16_t q15_t;
  352. /**
  353. * @brief 32-bit fractional data type in 1.31 format.
  354. */
  355. typedef int32_t q31_t;
  356. /**
  357. * @brief 64-bit fractional data type in 1.63 format.
  358. */
  359. typedef int64_t q63_t;
  360. /**
  361. * @brief 32-bit floating-point type definition.
  362. */
  363. typedef float float32_t;
  364. /**
  365. * @brief 64-bit floating-point type definition.
  366. */
  367. typedef double float64_t;
  368. /**
  369. * @brief definition to read/write two 16 bit values.
  370. */
  371. #if defined __CC_ARM
  372. #define __SIMD32_TYPE int32_t __packed
  373. #define CMSIS_UNUSED __attribute__((unused))
  374. #elif defined __ICCARM__
  375. #define CMSIS_UNUSED
  376. #define __SIMD32_TYPE int32_t __packed
  377. #elif defined __GNUC__
  378. #define __SIMD32_TYPE int32_t
  379. #define CMSIS_UNUSED __attribute__((unused))
  380. #elif defined __CSMC__ /* Cosmic */
  381. #define CMSIS_UNUSED
  382. #define __SIMD32_TYPE int32_t
  383. #else
  384. #error Unknown compiler
  385. #endif
  386. #define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
  387. #define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
  388. #define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
  389. #define __SIMD64(addr) (*(int64_t **) & (addr))
  390. #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
  391. /**
  392. * @brief definition to pack two 16 bit values.
  393. */
  394. #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
  395. (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
  396. #define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
  397. (((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
  398. #endif
  399. /**
  400. * @brief definition to pack four 8 bit values.
  401. */
  402. #ifndef ARM_MATH_BIG_ENDIAN
  403. #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
  404. (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
  405. (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
  406. (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
  407. #else
  408. #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
  409. (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
  410. (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
  411. (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
  412. #endif
  413. /**
  414. * @brief Clips Q63 to Q31 values.
  415. */
  416. static __INLINE q31_t clip_q63_to_q31(
  417. q63_t x)
  418. {
  419. return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
  420. ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
  421. }
  422. /**
  423. * @brief Clips Q63 to Q15 values.
  424. */
  425. static __INLINE q15_t clip_q63_to_q15(
  426. q63_t x)
  427. {
  428. return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
  429. ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
  430. }
  431. /**
  432. * @brief Clips Q31 to Q7 values.
  433. */
  434. static __INLINE q7_t clip_q31_to_q7(
  435. q31_t x)
  436. {
  437. return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
  438. ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
  439. }
  440. /**
  441. * @brief Clips Q31 to Q15 values.
  442. */
  443. static __INLINE q15_t clip_q31_to_q15(
  444. q31_t x)
  445. {
  446. return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
  447. ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
  448. }
  449. /**
  450. * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
  451. */
  452. static __INLINE q63_t mult32x64(
  453. q63_t x,
  454. q31_t y)
  455. {
  456. return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
  457. (((q63_t) (x >> 32) * y)));
  458. }
  459. #if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
  460. #define __CLZ __clz
  461. #endif
  462. #if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
  463. static __INLINE uint32_t __CLZ(
  464. q31_t data);
  465. static __INLINE uint32_t __CLZ(
  466. q31_t data)
  467. {
  468. uint32_t count = 0;
  469. uint32_t mask = 0x80000000;
  470. while((data & mask) == 0)
  471. {
  472. count += 1u;
  473. mask = mask >> 1u;
  474. }
  475. return (count);
  476. }
  477. #endif
  478. /**
  479. * @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
  480. */
  481. static __INLINE uint32_t arm_recip_q31(
  482. q31_t in,
  483. q31_t * dst,
  484. q31_t * pRecipTable)
  485. {
  486. uint32_t out, tempVal;
  487. uint32_t index, i;
  488. uint32_t signBits;
  489. if(in > 0)
  490. {
  491. signBits = __CLZ(in) - 1;
  492. }
  493. else
  494. {
  495. signBits = __CLZ(-in) - 1;
  496. }
  497. /* Convert input sample to 1.31 format */
  498. in = in << signBits;
  499. /* calculation of index for initial approximated Val */
  500. index = (uint32_t) (in >> 24u);
  501. index = (index & INDEX_MASK);
  502. /* 1.31 with exp 1 */
  503. out = pRecipTable[index];
  504. /* calculation of reciprocal value */
  505. /* running approximation for two iterations */
  506. for (i = 0u; i < 2u; i++)
  507. {
  508. tempVal = (q31_t) (((q63_t) in * out) >> 31u);
  509. tempVal = 0x7FFFFFFF - tempVal;
  510. /* 1.31 with exp 1 */
  511. //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
  512. out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
  513. }
  514. /* write output */
  515. *dst = out;
  516. /* return num of signbits of out = 1/in value */
  517. return (signBits + 1u);
  518. }
  519. /**
  520. * @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
  521. */
  522. static __INLINE uint32_t arm_recip_q15(
  523. q15_t in,
  524. q15_t * dst,
  525. q15_t * pRecipTable)
  526. {
  527. uint32_t out = 0, tempVal = 0;
  528. uint32_t index = 0, i = 0;
  529. uint32_t signBits = 0;
  530. if(in > 0)
  531. {
  532. signBits = __CLZ(in) - 17;
  533. }
  534. else
  535. {
  536. signBits = __CLZ(-in) - 17;
  537. }
  538. /* Convert input sample to 1.15 format */
  539. in = in << signBits;
  540. /* calculation of index for initial approximated Val */
  541. index = in >> 8;
  542. index = (index & INDEX_MASK);
  543. /* 1.15 with exp 1 */
  544. out = pRecipTable[index];
  545. /* calculation of reciprocal value */
  546. /* running approximation for two iterations */
  547. for (i = 0; i < 2; i++)
  548. {
  549. tempVal = (q15_t) (((q31_t) in * out) >> 15);
  550. tempVal = 0x7FFF - tempVal;
  551. /* 1.15 with exp 1 */
  552. out = (q15_t) (((q31_t) out * tempVal) >> 14);
  553. }
  554. /* write output */
  555. *dst = out;
  556. /* return num of signbits of out = 1/in value */
  557. return (signBits + 1);
  558. }
  559. /*
  560. * @brief C custom defined intrinisic function for only M0 processors
  561. */
  562. #if defined(ARM_MATH_CM0_FAMILY)
  563. static __INLINE q31_t __SSAT(
  564. q31_t x,
  565. uint32_t y)
  566. {
  567. int32_t posMax, negMin;
  568. uint32_t i;
  569. posMax = 1;
  570. for (i = 0; i < (y - 1); i++)
  571. {
  572. posMax = posMax * 2;
  573. }
  574. if(x > 0)
  575. {
  576. posMax = (posMax - 1);
  577. if(x > posMax)
  578. {
  579. x = posMax;
  580. }
  581. }
  582. else
  583. {
  584. negMin = -posMax;
  585. if(x < negMin)
  586. {
  587. x = negMin;
  588. }
  589. }
  590. return (x);
  591. }
  592. #endif /* end of ARM_MATH_CM0_FAMILY */
  593. /*
  594. * @brief C custom defined intrinsic function for M3 and M0 processors
  595. */
  596. #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
  597. /*
  598. * @brief C custom defined QADD8 for M3 and M0 processors
  599. */
  600. static __INLINE q31_t __QADD8(
  601. q31_t x,
  602. q31_t y)
  603. {
  604. q31_t sum;
  605. q7_t r, s, t, u;
  606. r = (q7_t) x;
  607. s = (q7_t) y;
  608. r = __SSAT((q31_t) (r + s), 8);
  609. s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
  610. t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
  611. u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
  612. sum =
  613. (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
  614. (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
  615. return sum;
  616. }
  617. /*
  618. * @brief C custom defined QSUB8 for M3 and M0 processors
  619. */
  620. static __INLINE q31_t __QSUB8(
  621. q31_t x,
  622. q31_t y)
  623. {
  624. q31_t sum;
  625. q31_t r, s, t, u;
  626. r = (q7_t) x;
  627. s = (q7_t) y;
  628. r = __SSAT((r - s), 8);
  629. s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
  630. t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
  631. u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
  632. sum =
  633. (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r &
  634. 0x000000FF);
  635. return sum;
  636. }
  637. /*
  638. * @brief C custom defined QADD16 for M3 and M0 processors
  639. */
  640. /*
  641. * @brief C custom defined QADD16 for M3 and M0 processors
  642. */
  643. static __INLINE q31_t __QADD16(
  644. q31_t x,
  645. q31_t y)
  646. {
  647. q31_t sum;
  648. q31_t r, s;
  649. r = (q15_t) x;
  650. s = (q15_t) y;
  651. r = __SSAT(r + s, 16);
  652. s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
  653. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  654. return sum;
  655. }
  656. /*
  657. * @brief C custom defined SHADD16 for M3 and M0 processors
  658. */
  659. static __INLINE q31_t __SHADD16(
  660. q31_t x,
  661. q31_t y)
  662. {
  663. q31_t sum;
  664. q31_t r, s;
  665. r = (q15_t) x;
  666. s = (q15_t) y;
  667. r = ((r >> 1) + (s >> 1));
  668. s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
  669. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  670. return sum;
  671. }
  672. /*
  673. * @brief C custom defined QSUB16 for M3 and M0 processors
  674. */
  675. static __INLINE q31_t __QSUB16(
  676. q31_t x,
  677. q31_t y)
  678. {
  679. q31_t sum;
  680. q31_t r, s;
  681. r = (q15_t) x;
  682. s = (q15_t) y;
  683. r = __SSAT(r - s, 16);
  684. s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
  685. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  686. return sum;
  687. }
  688. /*
  689. * @brief C custom defined SHSUB16 for M3 and M0 processors
  690. */
  691. static __INLINE q31_t __SHSUB16(
  692. q31_t x,
  693. q31_t y)
  694. {
  695. q31_t diff;
  696. q31_t r, s;
  697. r = (q15_t) x;
  698. s = (q15_t) y;
  699. r = ((r >> 1) - (s >> 1));
  700. s = (((x >> 17) - (y >> 17)) << 16);
  701. diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  702. return diff;
  703. }
  704. /*
  705. * @brief C custom defined QASX for M3 and M0 processors
  706. */
  707. static __INLINE q31_t __QASX(
  708. q31_t x,
  709. q31_t y)
  710. {
  711. q31_t sum = 0;
  712. sum =
  713. ((sum +
  714. clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) + (q15_t) y))) << 16) +
  715. clip_q31_to_q15((q31_t) ((q15_t) x - (q15_t) (y >> 16)));
  716. return sum;
  717. }
  718. /*
  719. * @brief C custom defined SHASX for M3 and M0 processors
  720. */
  721. static __INLINE q31_t __SHASX(
  722. q31_t x,
  723. q31_t y)
  724. {
  725. q31_t sum;
  726. q31_t r, s;
  727. r = (q15_t) x;
  728. s = (q15_t) y;
  729. r = ((r >> 1) - (y >> 17));
  730. s = (((x >> 17) + (s >> 1)) << 16);
  731. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  732. return sum;
  733. }
  734. /*
  735. * @brief C custom defined QSAX for M3 and M0 processors
  736. */
  737. static __INLINE q31_t __QSAX(
  738. q31_t x,
  739. q31_t y)
  740. {
  741. q31_t sum = 0;
  742. sum =
  743. ((sum +
  744. clip_q31_to_q15((q31_t) ((q15_t) (x >> 16) - (q15_t) y))) << 16) +
  745. clip_q31_to_q15((q31_t) ((q15_t) x + (q15_t) (y >> 16)));
  746. return sum;
  747. }
  748. /*
  749. * @brief C custom defined SHSAX for M3 and M0 processors
  750. */
  751. static __INLINE q31_t __SHSAX(
  752. q31_t x,
  753. q31_t y)
  754. {
  755. q31_t sum;
  756. q31_t r, s;
  757. r = (q15_t) x;
  758. s = (q15_t) y;
  759. r = ((r >> 1) + (y >> 17));
  760. s = (((x >> 17) - (s >> 1)) << 16);
  761. sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
  762. return sum;
  763. }
  764. /*
  765. * @brief C custom defined SMUSDX for M3 and M0 processors
  766. */
  767. static __INLINE q31_t __SMUSDX(
  768. q31_t x,
  769. q31_t y)
  770. {
  771. return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) -
  772. ((q15_t) (x >> 16) * (q15_t) y)));
  773. }
  774. /*
  775. * @brief C custom defined SMUADX for M3 and M0 processors
  776. */
  777. static __INLINE q31_t __SMUADX(
  778. q31_t x,
  779. q31_t y)
  780. {
  781. return ((q31_t) (((q15_t) x * (q15_t) (y >> 16)) +
  782. ((q15_t) (x >> 16) * (q15_t) y)));
  783. }
  784. /*
  785. * @brief C custom defined QADD for M3 and M0 processors
  786. */
  787. static __INLINE q31_t __QADD(
  788. q31_t x,
  789. q31_t y)
  790. {
  791. return clip_q63_to_q31((q63_t) x + y);
  792. }
  793. /*
  794. * @brief C custom defined QSUB for M3 and M0 processors
  795. */
  796. static __INLINE q31_t __QSUB(
  797. q31_t x,
  798. q31_t y)
  799. {
  800. return clip_q63_to_q31((q63_t) x - y);
  801. }
  802. /*
  803. * @brief C custom defined SMLAD for M3 and M0 processors
  804. */
  805. static __INLINE q31_t __SMLAD(
  806. q31_t x,
  807. q31_t y,
  808. q31_t sum)
  809. {
  810. return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
  811. ((q15_t) x * (q15_t) y));
  812. }
  813. /*
  814. * @brief C custom defined SMLADX for M3 and M0 processors
  815. */
  816. static __INLINE q31_t __SMLADX(
  817. q31_t x,
  818. q31_t y,
  819. q31_t sum)
  820. {
  821. return (sum + ((q15_t) (x >> 16) * (q15_t) (y)) +
  822. ((q15_t) x * (q15_t) (y >> 16)));
  823. }
  824. /*
  825. * @brief C custom defined SMLSDX for M3 and M0 processors
  826. */
  827. static __INLINE q31_t __SMLSDX(
  828. q31_t x,
  829. q31_t y,
  830. q31_t sum)
  831. {
  832. return (sum - ((q15_t) (x >> 16) * (q15_t) (y)) +
  833. ((q15_t) x * (q15_t) (y >> 16)));
  834. }
  835. /*
  836. * @brief C custom defined SMLALD for M3 and M0 processors
  837. */
  838. static __INLINE q63_t __SMLALD(
  839. q31_t x,
  840. q31_t y,
  841. q63_t sum)
  842. {
  843. return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) +
  844. ((q15_t) x * (q15_t) y));
  845. }
  846. /*
  847. * @brief C custom defined SMLALDX for M3 and M0 processors
  848. */
  849. static __INLINE q63_t __SMLALDX(
  850. q31_t x,
  851. q31_t y,
  852. q63_t sum)
  853. {
  854. return (sum + ((q15_t) (x >> 16) * (q15_t) y)) +
  855. ((q15_t) x * (q15_t) (y >> 16));
  856. }
  857. /*
  858. * @brief C custom defined SMUAD for M3 and M0 processors
  859. */
  860. static __INLINE q31_t __SMUAD(
  861. q31_t x,
  862. q31_t y)
  863. {
  864. return (((x >> 16) * (y >> 16)) +
  865. (((x << 16) >> 16) * ((y << 16) >> 16)));
  866. }
  867. /*
  868. * @brief C custom defined SMUSD for M3 and M0 processors
  869. */
  870. static __INLINE q31_t __SMUSD(
  871. q31_t x,
  872. q31_t y)
  873. {
  874. return (-((x >> 16) * (y >> 16)) +
  875. (((x << 16) >> 16) * ((y << 16) >> 16)));
  876. }
  877. /*
  878. * @brief C custom defined SXTB16 for M3 and M0 processors
  879. */
  880. static __INLINE q31_t __SXTB16(
  881. q31_t x)
  882. {
  883. return ((((x << 24) >> 24) & 0x0000FFFF) |
  884. (((x << 8) >> 8) & 0xFFFF0000));
  885. }
  886. #endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
  887. /**
  888. * @brief Instance structure for the Q7 FIR filter.
  889. */
  890. typedef struct
  891. {
  892. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  893. q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  894. q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  895. } arm_fir_instance_q7;
  896. /**
  897. * @brief Instance structure for the Q15 FIR filter.
  898. */
  899. typedef struct
  900. {
  901. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  902. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  903. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  904. } arm_fir_instance_q15;
  905. /**
  906. * @brief Instance structure for the Q31 FIR filter.
  907. */
  908. typedef struct
  909. {
  910. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  911. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  912. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  913. } arm_fir_instance_q31;
  914. /**
  915. * @brief Instance structure for the floating-point FIR filter.
  916. */
  917. typedef struct
  918. {
  919. uint16_t numTaps; /**< number of filter coefficients in the filter. */
  920. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  921. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  922. } arm_fir_instance_f32;
  923. /**
  924. * @brief Processing function for the Q7 FIR filter.
  925. * @param[in] *S points to an instance of the Q7 FIR filter structure.
  926. * @param[in] *pSrc points to the block of input data.
  927. * @param[out] *pDst points to the block of output data.
  928. * @param[in] blockSize number of samples to process.
  929. * @return none.
  930. */
  931. void arm_fir_q7(
  932. const arm_fir_instance_q7 * S,
  933. q7_t * pSrc,
  934. q7_t * pDst,
  935. uint32_t blockSize);
  936. /**
  937. * @brief Initialization function for the Q7 FIR filter.
  938. * @param[in,out] *S points to an instance of the Q7 FIR structure.
  939. * @param[in] numTaps Number of filter coefficients in the filter.
  940. * @param[in] *pCoeffs points to the filter coefficients.
  941. * @param[in] *pState points to the state buffer.
  942. * @param[in] blockSize number of samples that are processed.
  943. * @return none
  944. */
  945. void arm_fir_init_q7(
  946. arm_fir_instance_q7 * S,
  947. uint16_t numTaps,
  948. q7_t * pCoeffs,
  949. q7_t * pState,
  950. uint32_t blockSize);
  951. /**
  952. * @brief Processing function for the Q15 FIR filter.
  953. * @param[in] *S points to an instance of the Q15 FIR structure.
  954. * @param[in] *pSrc points to the block of input data.
  955. * @param[out] *pDst points to the block of output data.
  956. * @param[in] blockSize number of samples to process.
  957. * @return none.
  958. */
  959. void arm_fir_q15(
  960. const arm_fir_instance_q15 * S,
  961. q15_t * pSrc,
  962. q15_t * pDst,
  963. uint32_t blockSize);
  964. /**
  965. * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
  966. * @param[in] *S points to an instance of the Q15 FIR filter structure.
  967. * @param[in] *pSrc points to the block of input data.
  968. * @param[out] *pDst points to the block of output data.
  969. * @param[in] blockSize number of samples to process.
  970. * @return none.
  971. */
  972. void arm_fir_fast_q15(
  973. const arm_fir_instance_q15 * S,
  974. q15_t * pSrc,
  975. q15_t * pDst,
  976. uint32_t blockSize);
  977. /**
  978. * @brief Initialization function for the Q15 FIR filter.
  979. * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
  980. * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
  981. * @param[in] *pCoeffs points to the filter coefficients.
  982. * @param[in] *pState points to the state buffer.
  983. * @param[in] blockSize number of samples that are processed at a time.
  984. * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
  985. * <code>numTaps</code> is not a supported value.
  986. */
  987. arm_status arm_fir_init_q15(
  988. arm_fir_instance_q15 * S,
  989. uint16_t numTaps,
  990. q15_t * pCoeffs,
  991. q15_t * pState,
  992. uint32_t blockSize);
  993. /**
  994. * @brief Processing function for the Q31 FIR filter.
  995. * @param[in] *S points to an instance of the Q31 FIR filter structure.
  996. * @param[in] *pSrc points to the block of input data.
  997. * @param[out] *pDst points to the block of output data.
  998. * @param[in] blockSize number of samples to process.
  999. * @return none.
  1000. */
  1001. void arm_fir_q31(
  1002. const arm_fir_instance_q31 * S,
  1003. q31_t * pSrc,
  1004. q31_t * pDst,
  1005. uint32_t blockSize);
  1006. /**
  1007. * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
  1008. * @param[in] *S points to an instance of the Q31 FIR structure.
  1009. * @param[in] *pSrc points to the block of input data.
  1010. * @param[out] *pDst points to the block of output data.
  1011. * @param[in] blockSize number of samples to process.
  1012. * @return none.
  1013. */
  1014. void arm_fir_fast_q31(
  1015. const arm_fir_instance_q31 * S,
  1016. q31_t * pSrc,
  1017. q31_t * pDst,
  1018. uint32_t blockSize);
  1019. /**
  1020. * @brief Initialization function for the Q31 FIR filter.
  1021. * @param[in,out] *S points to an instance of the Q31 FIR structure.
  1022. * @param[in] numTaps Number of filter coefficients in the filter.
  1023. * @param[in] *pCoeffs points to the filter coefficients.
  1024. * @param[in] *pState points to the state buffer.
  1025. * @param[in] blockSize number of samples that are processed at a time.
  1026. * @return none.
  1027. */
  1028. void arm_fir_init_q31(
  1029. arm_fir_instance_q31 * S,
  1030. uint16_t numTaps,
  1031. q31_t * pCoeffs,
  1032. q31_t * pState,
  1033. uint32_t blockSize);
  1034. /**
  1035. * @brief Processing function for the floating-point FIR filter.
  1036. * @param[in] *S points to an instance of the floating-point FIR structure.
  1037. * @param[in] *pSrc points to the block of input data.
  1038. * @param[out] *pDst points to the block of output data.
  1039. * @param[in] blockSize number of samples to process.
  1040. * @return none.
  1041. */
  1042. void arm_fir_f32(
  1043. const arm_fir_instance_f32 * S,
  1044. float32_t * pSrc,
  1045. float32_t * pDst,
  1046. uint32_t blockSize);
  1047. /**
  1048. * @brief Initialization function for the floating-point FIR filter.
  1049. * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
  1050. * @param[in] numTaps Number of filter coefficients in the filter.
  1051. * @param[in] *pCoeffs points to the filter coefficients.
  1052. * @param[in] *pState points to the state buffer.
  1053. * @param[in] blockSize number of samples that are processed at a time.
  1054. * @return none.
  1055. */
  1056. void arm_fir_init_f32(
  1057. arm_fir_instance_f32 * S,
  1058. uint16_t numTaps,
  1059. float32_t * pCoeffs,
  1060. float32_t * pState,
  1061. uint32_t blockSize);
  1062. /**
  1063. * @brief Instance structure for the Q15 Biquad cascade filter.
  1064. */
  1065. typedef struct
  1066. {
  1067. int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  1068. q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
  1069. q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
  1070. int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
  1071. } arm_biquad_casd_df1_inst_q15;
  1072. /**
  1073. * @brief Instance structure for the Q31 Biquad cascade filter.
  1074. */
  1075. typedef struct
  1076. {
  1077. uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  1078. q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
  1079. q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
  1080. uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
  1081. } arm_biquad_casd_df1_inst_q31;
  1082. /**
  1083. * @brief Instance structure for the floating-point Biquad cascade filter.
  1084. */
  1085. typedef struct
  1086. {
  1087. uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  1088. float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
  1089. float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
  1090. } arm_biquad_casd_df1_inst_f32;
  1091. /**
  1092. * @brief Processing function for the Q15 Biquad cascade filter.
  1093. * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
  1094. * @param[in] *pSrc points to the block of input data.
  1095. * @param[out] *pDst points to the block of output data.
  1096. * @param[in] blockSize number of samples to process.
  1097. * @return none.
  1098. */
  1099. void arm_biquad_cascade_df1_q15(
  1100. const arm_biquad_casd_df1_inst_q15 * S,
  1101. q15_t * pSrc,
  1102. q15_t * pDst,
  1103. uint32_t blockSize);
  1104. /**
  1105. * @brief Initialization function for the Q15 Biquad cascade filter.
  1106. * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
  1107. * @param[in] numStages number of 2nd order stages in the filter.
  1108. * @param[in] *pCoeffs points to the filter coefficients.
  1109. * @param[in] *pState points to the state buffer.
  1110. * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
  1111. * @return none
  1112. */
  1113. void arm_biquad_cascade_df1_init_q15(
  1114. arm_biquad_casd_df1_inst_q15 * S,
  1115. uint8_t numStages,
  1116. q15_t * pCoeffs,
  1117. q15_t * pState,
  1118. int8_t postShift);
  1119. /**
  1120. * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
  1121. * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
  1122. * @param[in] *pSrc points to the block of input data.
  1123. * @param[out] *pDst points to the block of output data.
  1124. * @param[in] blockSize number of samples to process.
  1125. * @return none.
  1126. */
  1127. void arm_biquad_cascade_df1_fast_q15(
  1128. const arm_biquad_casd_df1_inst_q15 * S,
  1129. q15_t * pSrc,
  1130. q15_t * pDst,
  1131. uint32_t blockSize);
  1132. /**
  1133. * @brief Processing function for the Q31 Biquad cascade filter
  1134. * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
  1135. * @param[in] *pSrc points to the block of input data.
  1136. * @param[out] *pDst points to the block of output data.
  1137. * @param[in] blockSize number of samples to process.
  1138. * @return none.
  1139. */
  1140. void arm_biquad_cascade_df1_q31(
  1141. const arm_biquad_casd_df1_inst_q31 * S,
  1142. q31_t * pSrc,
  1143. q31_t * pDst,
  1144. uint32_t blockSize);
  1145. /**
  1146. * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
  1147. * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
  1148. * @param[in] *pSrc points to the block of input data.
  1149. * @param[out] *pDst points to the block of output data.
  1150. * @param[in] blockSize number of samples to process.
  1151. * @return none.
  1152. */
  1153. void arm_biquad_cascade_df1_fast_q31(
  1154. const arm_biquad_casd_df1_inst_q31 * S,
  1155. q31_t * pSrc,
  1156. q31_t * pDst,
  1157. uint32_t blockSize);
  1158. /**
  1159. * @brief Initialization function for the Q31 Biquad cascade filter.
  1160. * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
  1161. * @param[in] numStages number of 2nd order stages in the filter.
  1162. * @param[in] *pCoeffs points to the filter coefficients.
  1163. * @param[in] *pState points to the state buffer.
  1164. * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
  1165. * @return none
  1166. */
  1167. void arm_biquad_cascade_df1_init_q31(
  1168. arm_biquad_casd_df1_inst_q31 * S,
  1169. uint8_t numStages,
  1170. q31_t * pCoeffs,
  1171. q31_t * pState,
  1172. int8_t postShift);
  1173. /**
  1174. * @brief Processing function for the floating-point Biquad cascade filter.
  1175. * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
  1176. * @param[in] *pSrc points to the block of input data.
  1177. * @param[out] *pDst points to the block of output data.
  1178. * @param[in] blockSize number of samples to process.
  1179. * @return none.
  1180. */
  1181. void arm_biquad_cascade_df1_f32(
  1182. const arm_biquad_casd_df1_inst_f32 * S,
  1183. float32_t * pSrc,
  1184. float32_t * pDst,
  1185. uint32_t blockSize);
  1186. /**
  1187. * @brief Initialization function for the floating-point Biquad cascade filter.
  1188. * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
  1189. * @param[in] numStages number of 2nd order stages in the filter.
  1190. * @param[in] *pCoeffs points to the filter coefficients.
  1191. * @param[in] *pState points to the state buffer.
  1192. * @return none
  1193. */
  1194. void arm_biquad_cascade_df1_init_f32(
  1195. arm_biquad_casd_df1_inst_f32 * S,
  1196. uint8_t numStages,
  1197. float32_t * pCoeffs,
  1198. float32_t * pState);
  1199. /**
  1200. * @brief Instance structure for the floating-point matrix structure.
  1201. */
  1202. typedef struct
  1203. {
  1204. uint16_t numRows; /**< number of rows of the matrix. */
  1205. uint16_t numCols; /**< number of columns of the matrix. */
  1206. float32_t *pData; /**< points to the data of the matrix. */
  1207. } arm_matrix_instance_f32;
  1208. /**
  1209. * @brief Instance structure for the floating-point matrix structure.
  1210. */
  1211. typedef struct
  1212. {
  1213. uint16_t numRows; /**< number of rows of the matrix. */
  1214. uint16_t numCols; /**< number of columns of the matrix. */
  1215. float64_t *pData; /**< points to the data of the matrix. */
  1216. } arm_matrix_instance_f64;
  1217. /**
  1218. * @brief Instance structure for the Q15 matrix structure.
  1219. */
  1220. typedef struct
  1221. {
  1222. uint16_t numRows; /**< number of rows of the matrix. */
  1223. uint16_t numCols; /**< number of columns of the matrix. */
  1224. q15_t *pData; /**< points to the data of the matrix. */
  1225. } arm_matrix_instance_q15;
  1226. /**
  1227. * @brief Instance structure for the Q31 matrix structure.
  1228. */
  1229. typedef struct
  1230. {
  1231. uint16_t numRows; /**< number of rows of the matrix. */
  1232. uint16_t numCols; /**< number of columns of the matrix. */
  1233. q31_t *pData; /**< points to the data of the matrix. */
  1234. } arm_matrix_instance_q31;
  1235. /**
  1236. * @brief Floating-point matrix addition.
  1237. * @param[in] *pSrcA points to the first input matrix structure
  1238. * @param[in] *pSrcB points to the second input matrix structure
  1239. * @param[out] *pDst points to output matrix structure
  1240. * @return The function returns either
  1241. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1242. */
  1243. arm_status arm_mat_add_f32(
  1244. const arm_matrix_instance_f32 * pSrcA,
  1245. const arm_matrix_instance_f32 * pSrcB,
  1246. arm_matrix_instance_f32 * pDst);
  1247. /**
  1248. * @brief Q15 matrix addition.
  1249. * @param[in] *pSrcA points to the first input matrix structure
  1250. * @param[in] *pSrcB points to the second input matrix structure
  1251. * @param[out] *pDst points to output matrix structure
  1252. * @return The function returns either
  1253. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1254. */
  1255. arm_status arm_mat_add_q15(
  1256. const arm_matrix_instance_q15 * pSrcA,
  1257. const arm_matrix_instance_q15 * pSrcB,
  1258. arm_matrix_instance_q15 * pDst);
  1259. /**
  1260. * @brief Q31 matrix addition.
  1261. * @param[in] *pSrcA points to the first input matrix structure
  1262. * @param[in] *pSrcB points to the second input matrix structure
  1263. * @param[out] *pDst points to output matrix structure
  1264. * @return The function returns either
  1265. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1266. */
  1267. arm_status arm_mat_add_q31(
  1268. const arm_matrix_instance_q31 * pSrcA,
  1269. const arm_matrix_instance_q31 * pSrcB,
  1270. arm_matrix_instance_q31 * pDst);
  1271. /**
  1272. * @brief Floating-point, complex, matrix multiplication.
  1273. * @param[in] *pSrcA points to the first input matrix structure
  1274. * @param[in] *pSrcB points to the second input matrix structure
  1275. * @param[out] *pDst points to output matrix structure
  1276. * @return The function returns either
  1277. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1278. */
  1279. arm_status arm_mat_cmplx_mult_f32(
  1280. const arm_matrix_instance_f32 * pSrcA,
  1281. const arm_matrix_instance_f32 * pSrcB,
  1282. arm_matrix_instance_f32 * pDst);
  1283. /**
  1284. * @brief Q15, complex, matrix multiplication.
  1285. * @param[in] *pSrcA points to the first input matrix structure
  1286. * @param[in] *pSrcB points to the second input matrix structure
  1287. * @param[out] *pDst points to output matrix structure
  1288. * @return The function returns either
  1289. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1290. */
  1291. arm_status arm_mat_cmplx_mult_q15(
  1292. const arm_matrix_instance_q15 * pSrcA,
  1293. const arm_matrix_instance_q15 * pSrcB,
  1294. arm_matrix_instance_q15 * pDst,
  1295. q15_t * pScratch);
  1296. /**
  1297. * @brief Q31, complex, matrix multiplication.
  1298. * @param[in] *pSrcA points to the first input matrix structure
  1299. * @param[in] *pSrcB points to the second input matrix structure
  1300. * @param[out] *pDst points to output matrix structure
  1301. * @return The function returns either
  1302. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1303. */
  1304. arm_status arm_mat_cmplx_mult_q31(
  1305. const arm_matrix_instance_q31 * pSrcA,
  1306. const arm_matrix_instance_q31 * pSrcB,
  1307. arm_matrix_instance_q31 * pDst);
  1308. /**
  1309. * @brief Floating-point matrix transpose.
  1310. * @param[in] *pSrc points to the input matrix
  1311. * @param[out] *pDst points to the output matrix
  1312. * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
  1313. * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1314. */
  1315. arm_status arm_mat_trans_f32(
  1316. const arm_matrix_instance_f32 * pSrc,
  1317. arm_matrix_instance_f32 * pDst);
  1318. /**
  1319. * @brief Q15 matrix transpose.
  1320. * @param[in] *pSrc points to the input matrix
  1321. * @param[out] *pDst points to the output matrix
  1322. * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
  1323. * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1324. */
  1325. arm_status arm_mat_trans_q15(
  1326. const arm_matrix_instance_q15 * pSrc,
  1327. arm_matrix_instance_q15 * pDst);
  1328. /**
  1329. * @brief Q31 matrix transpose.
  1330. * @param[in] *pSrc points to the input matrix
  1331. * @param[out] *pDst points to the output matrix
  1332. * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
  1333. * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1334. */
  1335. arm_status arm_mat_trans_q31(
  1336. const arm_matrix_instance_q31 * pSrc,
  1337. arm_matrix_instance_q31 * pDst);
  1338. /**
  1339. * @brief Floating-point matrix multiplication
  1340. * @param[in] *pSrcA points to the first input matrix structure
  1341. * @param[in] *pSrcB points to the second input matrix structure
  1342. * @param[out] *pDst points to output matrix structure
  1343. * @return The function returns either
  1344. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1345. */
  1346. arm_status arm_mat_mult_f32(
  1347. const arm_matrix_instance_f32 * pSrcA,
  1348. const arm_matrix_instance_f32 * pSrcB,
  1349. arm_matrix_instance_f32 * pDst);
  1350. /**
  1351. * @brief Q15 matrix multiplication
  1352. * @param[in] *pSrcA points to the first input matrix structure
  1353. * @param[in] *pSrcB points to the second input matrix structure
  1354. * @param[out] *pDst points to output matrix structure
  1355. * @param[in] *pState points to the array for storing intermediate results
  1356. * @return The function returns either
  1357. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1358. */
  1359. arm_status arm_mat_mult_q15(
  1360. const arm_matrix_instance_q15 * pSrcA,
  1361. const arm_matrix_instance_q15 * pSrcB,
  1362. arm_matrix_instance_q15 * pDst,
  1363. q15_t * pState);
  1364. /**
  1365. * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
  1366. * @param[in] *pSrcA points to the first input matrix structure
  1367. * @param[in] *pSrcB points to the second input matrix structure
  1368. * @param[out] *pDst points to output matrix structure
  1369. * @param[in] *pState points to the array for storing intermediate results
  1370. * @return The function returns either
  1371. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1372. */
  1373. arm_status arm_mat_mult_fast_q15(
  1374. const arm_matrix_instance_q15 * pSrcA,
  1375. const arm_matrix_instance_q15 * pSrcB,
  1376. arm_matrix_instance_q15 * pDst,
  1377. q15_t * pState);
  1378. /**
  1379. * @brief Q31 matrix multiplication
  1380. * @param[in] *pSrcA points to the first input matrix structure
  1381. * @param[in] *pSrcB points to the second input matrix structure
  1382. * @param[out] *pDst points to output matrix structure
  1383. * @return The function returns either
  1384. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1385. */
  1386. arm_status arm_mat_mult_q31(
  1387. const arm_matrix_instance_q31 * pSrcA,
  1388. const arm_matrix_instance_q31 * pSrcB,
  1389. arm_matrix_instance_q31 * pDst);
  1390. /**
  1391. * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
  1392. * @param[in] *pSrcA points to the first input matrix structure
  1393. * @param[in] *pSrcB points to the second input matrix structure
  1394. * @param[out] *pDst points to output matrix structure
  1395. * @return The function returns either
  1396. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1397. */
  1398. arm_status arm_mat_mult_fast_q31(
  1399. const arm_matrix_instance_q31 * pSrcA,
  1400. const arm_matrix_instance_q31 * pSrcB,
  1401. arm_matrix_instance_q31 * pDst);
  1402. /**
  1403. * @brief Floating-point matrix subtraction
  1404. * @param[in] *pSrcA points to the first input matrix structure
  1405. * @param[in] *pSrcB points to the second input matrix structure
  1406. * @param[out] *pDst points to output matrix structure
  1407. * @return The function returns either
  1408. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1409. */
  1410. arm_status arm_mat_sub_f32(
  1411. const arm_matrix_instance_f32 * pSrcA,
  1412. const arm_matrix_instance_f32 * pSrcB,
  1413. arm_matrix_instance_f32 * pDst);
  1414. /**
  1415. * @brief Q15 matrix subtraction
  1416. * @param[in] *pSrcA points to the first input matrix structure
  1417. * @param[in] *pSrcB points to the second input matrix structure
  1418. * @param[out] *pDst points to output matrix structure
  1419. * @return The function returns either
  1420. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1421. */
  1422. arm_status arm_mat_sub_q15(
  1423. const arm_matrix_instance_q15 * pSrcA,
  1424. const arm_matrix_instance_q15 * pSrcB,
  1425. arm_matrix_instance_q15 * pDst);
  1426. /**
  1427. * @brief Q31 matrix subtraction
  1428. * @param[in] *pSrcA points to the first input matrix structure
  1429. * @param[in] *pSrcB points to the second input matrix structure
  1430. * @param[out] *pDst points to output matrix structure
  1431. * @return The function returns either
  1432. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1433. */
  1434. arm_status arm_mat_sub_q31(
  1435. const arm_matrix_instance_q31 * pSrcA,
  1436. const arm_matrix_instance_q31 * pSrcB,
  1437. arm_matrix_instance_q31 * pDst);
  1438. /**
  1439. * @brief Floating-point matrix scaling.
  1440. * @param[in] *pSrc points to the input matrix
  1441. * @param[in] scale scale factor
  1442. * @param[out] *pDst points to the output matrix
  1443. * @return The function returns either
  1444. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1445. */
  1446. arm_status arm_mat_scale_f32(
  1447. const arm_matrix_instance_f32 * pSrc,
  1448. float32_t scale,
  1449. arm_matrix_instance_f32 * pDst);
  1450. /**
  1451. * @brief Q15 matrix scaling.
  1452. * @param[in] *pSrc points to input matrix
  1453. * @param[in] scaleFract fractional portion of the scale factor
  1454. * @param[in] shift number of bits to shift the result by
  1455. * @param[out] *pDst points to output matrix
  1456. * @return The function returns either
  1457. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1458. */
  1459. arm_status arm_mat_scale_q15(
  1460. const arm_matrix_instance_q15 * pSrc,
  1461. q15_t scaleFract,
  1462. int32_t shift,
  1463. arm_matrix_instance_q15 * pDst);
  1464. /**
  1465. * @brief Q31 matrix scaling.
  1466. * @param[in] *pSrc points to input matrix
  1467. * @param[in] scaleFract fractional portion of the scale factor
  1468. * @param[in] shift number of bits to shift the result by
  1469. * @param[out] *pDst points to output matrix structure
  1470. * @return The function returns either
  1471. * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
  1472. */
  1473. arm_status arm_mat_scale_q31(
  1474. const arm_matrix_instance_q31 * pSrc,
  1475. q31_t scaleFract,
  1476. int32_t shift,
  1477. arm_matrix_instance_q31 * pDst);
  1478. /**
  1479. * @brief Q31 matrix initialization.
  1480. * @param[in,out] *S points to an instance of the floating-point matrix structure.
  1481. * @param[in] nRows number of rows in the matrix.
  1482. * @param[in] nColumns number of columns in the matrix.
  1483. * @param[in] *pData points to the matrix data array.
  1484. * @return none
  1485. */
  1486. void arm_mat_init_q31(
  1487. arm_matrix_instance_q31 * S,
  1488. uint16_t nRows,
  1489. uint16_t nColumns,
  1490. q31_t * pData);
  1491. /**
  1492. * @brief Q15 matrix initialization.
  1493. * @param[in,out] *S points to an instance of the floating-point matrix structure.
  1494. * @param[in] nRows number of rows in the matrix.
  1495. * @param[in] nColumns number of columns in the matrix.
  1496. * @param[in] *pData points to the matrix data array.
  1497. * @return none
  1498. */
  1499. void arm_mat_init_q15(
  1500. arm_matrix_instance_q15 * S,
  1501. uint16_t nRows,
  1502. uint16_t nColumns,
  1503. q15_t * pData);
  1504. /**
  1505. * @brief Floating-point matrix initialization.
  1506. * @param[in,out] *S points to an instance of the floating-point matrix structure.
  1507. * @param[in] nRows number of rows in the matrix.
  1508. * @param[in] nColumns number of columns in the matrix.
  1509. * @param[in] *pData points to the matrix data array.
  1510. * @return none
  1511. */
  1512. void arm_mat_init_f32(
  1513. arm_matrix_instance_f32 * S,
  1514. uint16_t nRows,
  1515. uint16_t nColumns,
  1516. float32_t * pData);
  1517. /**
  1518. * @brief Instance structure for the Q15 PID Control.
  1519. */
  1520. typedef struct
  1521. {
  1522. q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
  1523. #ifdef ARM_MATH_CM0_FAMILY
  1524. q15_t A1;
  1525. q15_t A2;
  1526. #else
  1527. q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
  1528. #endif
  1529. q15_t state[3]; /**< The state array of length 3. */
  1530. q15_t Kp; /**< The proportional gain. */
  1531. q15_t Ki; /**< The integral gain. */
  1532. q15_t Kd; /**< The derivative gain. */
  1533. } arm_pid_instance_q15;
  1534. /**
  1535. * @brief Instance structure for the Q31 PID Control.
  1536. */
  1537. typedef struct
  1538. {
  1539. q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
  1540. q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
  1541. q31_t A2; /**< The derived gain, A2 = Kd . */
  1542. q31_t state[3]; /**< The state array of length 3. */
  1543. q31_t Kp; /**< The proportional gain. */
  1544. q31_t Ki; /**< The integral gain. */
  1545. q31_t Kd; /**< The derivative gain. */
  1546. } arm_pid_instance_q31;
  1547. /**
  1548. * @brief Instance structure for the floating-point PID Control.
  1549. */
  1550. typedef struct
  1551. {
  1552. float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
  1553. float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
  1554. float32_t A2; /**< The derived gain, A2 = Kd . */
  1555. float32_t state[3]; /**< The state array of length 3. */
  1556. float32_t Kp; /**< The proportional gain. */
  1557. float32_t Ki; /**< The integral gain. */
  1558. float32_t Kd; /**< The derivative gain. */
  1559. } arm_pid_instance_f32;
  1560. /**
  1561. * @brief Initialization function for the floating-point PID Control.
  1562. * @param[in,out] *S points to an instance of the PID structure.
  1563. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
  1564. * @return none.
  1565. */
  1566. void arm_pid_init_f32(
  1567. arm_pid_instance_f32 * S,
  1568. int32_t resetStateFlag);
  1569. /**
  1570. * @brief Reset function for the floating-point PID Control.
  1571. * @param[in,out] *S is an instance of the floating-point PID Control structure
  1572. * @return none
  1573. */
  1574. void arm_pid_reset_f32(
  1575. arm_pid_instance_f32 * S);
  1576. /**
  1577. * @brief Initialization function for the Q31 PID Control.
  1578. * @param[in,out] *S points to an instance of the Q15 PID structure.
  1579. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
  1580. * @return none.
  1581. */
  1582. void arm_pid_init_q31(
  1583. arm_pid_instance_q31 * S,
  1584. int32_t resetStateFlag);
  1585. /**
  1586. * @brief Reset function for the Q31 PID Control.
  1587. * @param[in,out] *S points to an instance of the Q31 PID Control structure
  1588. * @return none
  1589. */
  1590. void arm_pid_reset_q31(
  1591. arm_pid_instance_q31 * S);
  1592. /**
  1593. * @brief Initialization function for the Q15 PID Control.
  1594. * @param[in,out] *S points to an instance of the Q15 PID structure.
  1595. * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
  1596. * @return none.
  1597. */
  1598. void arm_pid_init_q15(
  1599. arm_pid_instance_q15 * S,
  1600. int32_t resetStateFlag);
  1601. /**
  1602. * @brief Reset function for the Q15 PID Control.
  1603. * @param[in,out] *S points to an instance of the q15 PID Control structure
  1604. * @return none
  1605. */
  1606. void arm_pid_reset_q15(
  1607. arm_pid_instance_q15 * S);
  1608. /**
  1609. * @brief Instance structure for the floating-point Linear Interpolate function.
  1610. */
  1611. typedef struct
  1612. {
  1613. uint32_t nValues; /**< nValues */
  1614. float32_t x1; /**< x1 */
  1615. float32_t xSpacing; /**< xSpacing */
  1616. float32_t *pYData; /**< pointer to the table of Y values */
  1617. } arm_linear_interp_instance_f32;
  1618. /**
  1619. * @brief Instance structure for the floating-point bilinear interpolation function.
  1620. */
  1621. typedef struct
  1622. {
  1623. uint16_t numRows; /**< number of rows in the data table. */
  1624. uint16_t numCols; /**< number of columns in the data table. */
  1625. float32_t *pData; /**< points to the data table. */
  1626. } arm_bilinear_interp_instance_f32;
  1627. /**
  1628. * @brief Instance structure for the Q31 bilinear interpolation function.
  1629. */
  1630. typedef struct
  1631. {
  1632. uint16_t numRows; /**< number of rows in the data table. */
  1633. uint16_t numCols; /**< number of columns in the data table. */
  1634. q31_t *pData; /**< points to the data table. */
  1635. } arm_bilinear_interp_instance_q31;
  1636. /**
  1637. * @brief Instance structure for the Q15 bilinear interpolation function.
  1638. */
  1639. typedef struct
  1640. {
  1641. uint16_t numRows; /**< number of rows in the data table. */
  1642. uint16_t numCols; /**< number of columns in the data table. */
  1643. q15_t *pData; /**< points to the data table. */
  1644. } arm_bilinear_interp_instance_q15;
  1645. /**
  1646. * @brief Instance structure for the Q15 bilinear interpolation function.
  1647. */
  1648. typedef struct
  1649. {
  1650. uint16_t numRows; /**< number of rows in the data table. */
  1651. uint16_t numCols; /**< number of columns in the data table. */
  1652. q7_t *pData; /**< points to the data table. */
  1653. } arm_bilinear_interp_instance_q7;
  1654. /**
  1655. * @brief Q7 vector multiplication.
  1656. * @param[in] *pSrcA points to the first input vector
  1657. * @param[in] *pSrcB points to the second input vector
  1658. * @param[out] *pDst points to the output vector
  1659. * @param[in] blockSize number of samples in each vector
  1660. * @return none.
  1661. */
  1662. void arm_mult_q7(
  1663. q7_t * pSrcA,
  1664. q7_t * pSrcB,
  1665. q7_t * pDst,
  1666. uint32_t blockSize);
  1667. /**
  1668. * @brief Q15 vector multiplication.
  1669. * @param[in] *pSrcA points to the first input vector
  1670. * @param[in] *pSrcB points to the second input vector
  1671. * @param[out] *pDst points to the output vector
  1672. * @param[in] blockSize number of samples in each vector
  1673. * @return none.
  1674. */
  1675. void arm_mult_q15(
  1676. q15_t * pSrcA,
  1677. q15_t * pSrcB,
  1678. q15_t * pDst,
  1679. uint32_t blockSize);
  1680. /**
  1681. * @brief Q31 vector multiplication.
  1682. * @param[in] *pSrcA points to the first input vector
  1683. * @param[in] *pSrcB points to the second input vector
  1684. * @param[out] *pDst points to the output vector
  1685. * @param[in] blockSize number of samples in each vector
  1686. * @return none.
  1687. */
  1688. void arm_mult_q31(
  1689. q31_t * pSrcA,
  1690. q31_t * pSrcB,
  1691. q31_t * pDst,
  1692. uint32_t blockSize);
  1693. /**
  1694. * @brief Floating-point vector multiplication.
  1695. * @param[in] *pSrcA points to the first input vector
  1696. * @param[in] *pSrcB points to the second input vector
  1697. * @param[out] *pDst points to the output vector
  1698. * @param[in] blockSize number of samples in each vector
  1699. * @return none.
  1700. */
  1701. void arm_mult_f32(
  1702. float32_t * pSrcA,
  1703. float32_t * pSrcB,
  1704. float32_t * pDst,
  1705. uint32_t blockSize);
  1706. /**
  1707. * @brief Instance structure for the Q15 CFFT/CIFFT function.
  1708. */
  1709. typedef struct
  1710. {
  1711. uint16_t fftLen; /**< length of the FFT. */
  1712. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1713. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1714. q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
  1715. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1716. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1717. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1718. } arm_cfft_radix2_instance_q15;
  1719. /* Deprecated */
  1720. arm_status arm_cfft_radix2_init_q15(
  1721. arm_cfft_radix2_instance_q15 * S,
  1722. uint16_t fftLen,
  1723. uint8_t ifftFlag,
  1724. uint8_t bitReverseFlag);
  1725. /* Deprecated */
  1726. void arm_cfft_radix2_q15(
  1727. const arm_cfft_radix2_instance_q15 * S,
  1728. q15_t * pSrc);
  1729. /**
  1730. * @brief Instance structure for the Q15 CFFT/CIFFT function.
  1731. */
  1732. typedef struct
  1733. {
  1734. uint16_t fftLen; /**< length of the FFT. */
  1735. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1736. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1737. q15_t *pTwiddle; /**< points to the twiddle factor table. */
  1738. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1739. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1740. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1741. } arm_cfft_radix4_instance_q15;
  1742. /* Deprecated */
  1743. arm_status arm_cfft_radix4_init_q15(
  1744. arm_cfft_radix4_instance_q15 * S,
  1745. uint16_t fftLen,
  1746. uint8_t ifftFlag,
  1747. uint8_t bitReverseFlag);
  1748. /* Deprecated */
  1749. void arm_cfft_radix4_q15(
  1750. const arm_cfft_radix4_instance_q15 * S,
  1751. q15_t * pSrc);
  1752. /**
  1753. * @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
  1754. */
  1755. typedef struct
  1756. {
  1757. uint16_t fftLen; /**< length of the FFT. */
  1758. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1759. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1760. q31_t *pTwiddle; /**< points to the Twiddle factor table. */
  1761. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1762. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1763. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1764. } arm_cfft_radix2_instance_q31;
  1765. /* Deprecated */
  1766. arm_status arm_cfft_radix2_init_q31(
  1767. arm_cfft_radix2_instance_q31 * S,
  1768. uint16_t fftLen,
  1769. uint8_t ifftFlag,
  1770. uint8_t bitReverseFlag);
  1771. /* Deprecated */
  1772. void arm_cfft_radix2_q31(
  1773. const arm_cfft_radix2_instance_q31 * S,
  1774. q31_t * pSrc);
  1775. /**
  1776. * @brief Instance structure for the Q31 CFFT/CIFFT function.
  1777. */
  1778. typedef struct
  1779. {
  1780. uint16_t fftLen; /**< length of the FFT. */
  1781. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1782. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1783. q31_t *pTwiddle; /**< points to the twiddle factor table. */
  1784. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1785. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1786. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1787. } arm_cfft_radix4_instance_q31;
  1788. /* Deprecated */
  1789. void arm_cfft_radix4_q31(
  1790. const arm_cfft_radix4_instance_q31 * S,
  1791. q31_t * pSrc);
  1792. /* Deprecated */
  1793. arm_status arm_cfft_radix4_init_q31(
  1794. arm_cfft_radix4_instance_q31 * S,
  1795. uint16_t fftLen,
  1796. uint8_t ifftFlag,
  1797. uint8_t bitReverseFlag);
  1798. /**
  1799. * @brief Instance structure for the floating-point CFFT/CIFFT function.
  1800. */
  1801. typedef struct
  1802. {
  1803. uint16_t fftLen; /**< length of the FFT. */
  1804. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1805. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1806. float32_t *pTwiddle; /**< points to the Twiddle factor table. */
  1807. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1808. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1809. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1810. float32_t onebyfftLen; /**< value of 1/fftLen. */
  1811. } arm_cfft_radix2_instance_f32;
  1812. /* Deprecated */
  1813. arm_status arm_cfft_radix2_init_f32(
  1814. arm_cfft_radix2_instance_f32 * S,
  1815. uint16_t fftLen,
  1816. uint8_t ifftFlag,
  1817. uint8_t bitReverseFlag);
  1818. /* Deprecated */
  1819. void arm_cfft_radix2_f32(
  1820. const arm_cfft_radix2_instance_f32 * S,
  1821. float32_t * pSrc);
  1822. /**
  1823. * @brief Instance structure for the floating-point CFFT/CIFFT function.
  1824. */
  1825. typedef struct
  1826. {
  1827. uint16_t fftLen; /**< length of the FFT. */
  1828. uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
  1829. uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
  1830. float32_t *pTwiddle; /**< points to the Twiddle factor table. */
  1831. uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1832. uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1833. uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
  1834. float32_t onebyfftLen; /**< value of 1/fftLen. */
  1835. } arm_cfft_radix4_instance_f32;
  1836. /* Deprecated */
  1837. arm_status arm_cfft_radix4_init_f32(
  1838. arm_cfft_radix4_instance_f32 * S,
  1839. uint16_t fftLen,
  1840. uint8_t ifftFlag,
  1841. uint8_t bitReverseFlag);
  1842. /* Deprecated */
  1843. void arm_cfft_radix4_f32(
  1844. const arm_cfft_radix4_instance_f32 * S,
  1845. float32_t * pSrc);
  1846. /**
  1847. * @brief Instance structure for the fixed-point CFFT/CIFFT function.
  1848. */
  1849. typedef struct
  1850. {
  1851. uint16_t fftLen; /**< length of the FFT. */
  1852. const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
  1853. const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1854. uint16_t bitRevLength; /**< bit reversal table length. */
  1855. } arm_cfft_instance_q15;
  1856. void arm_cfft_q15(
  1857. const arm_cfft_instance_q15 * S,
  1858. q15_t * p1,
  1859. uint8_t ifftFlag,
  1860. uint8_t bitReverseFlag);
  1861. /**
  1862. * @brief Instance structure for the fixed-point CFFT/CIFFT function.
  1863. */
  1864. typedef struct
  1865. {
  1866. uint16_t fftLen; /**< length of the FFT. */
  1867. const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
  1868. const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1869. uint16_t bitRevLength; /**< bit reversal table length. */
  1870. } arm_cfft_instance_q31;
  1871. void arm_cfft_q31(
  1872. const arm_cfft_instance_q31 * S,
  1873. q31_t * p1,
  1874. uint8_t ifftFlag,
  1875. uint8_t bitReverseFlag);
  1876. /**
  1877. * @brief Instance structure for the floating-point CFFT/CIFFT function.
  1878. */
  1879. typedef struct
  1880. {
  1881. uint16_t fftLen; /**< length of the FFT. */
  1882. const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
  1883. const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
  1884. uint16_t bitRevLength; /**< bit reversal table length. */
  1885. } arm_cfft_instance_f32;
  1886. void arm_cfft_f32(
  1887. const arm_cfft_instance_f32 * S,
  1888. float32_t * p1,
  1889. uint8_t ifftFlag,
  1890. uint8_t bitReverseFlag);
  1891. /**
  1892. * @brief Instance structure for the Q15 RFFT/RIFFT function.
  1893. */
  1894. typedef struct
  1895. {
  1896. uint32_t fftLenReal; /**< length of the real FFT. */
  1897. uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
  1898. uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
  1899. uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1900. q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
  1901. q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
  1902. const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
  1903. } arm_rfft_instance_q15;
  1904. arm_status arm_rfft_init_q15(
  1905. arm_rfft_instance_q15 * S,
  1906. uint32_t fftLenReal,
  1907. uint32_t ifftFlagR,
  1908. uint32_t bitReverseFlag);
  1909. void arm_rfft_q15(
  1910. const arm_rfft_instance_q15 * S,
  1911. q15_t * pSrc,
  1912. q15_t * pDst);
  1913. /**
  1914. * @brief Instance structure for the Q31 RFFT/RIFFT function.
  1915. */
  1916. typedef struct
  1917. {
  1918. uint32_t fftLenReal; /**< length of the real FFT. */
  1919. uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
  1920. uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
  1921. uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1922. q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
  1923. q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
  1924. const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
  1925. } arm_rfft_instance_q31;
  1926. arm_status arm_rfft_init_q31(
  1927. arm_rfft_instance_q31 * S,
  1928. uint32_t fftLenReal,
  1929. uint32_t ifftFlagR,
  1930. uint32_t bitReverseFlag);
  1931. void arm_rfft_q31(
  1932. const arm_rfft_instance_q31 * S,
  1933. q31_t * pSrc,
  1934. q31_t * pDst);
  1935. /**
  1936. * @brief Instance structure for the floating-point RFFT/RIFFT function.
  1937. */
  1938. typedef struct
  1939. {
  1940. uint32_t fftLenReal; /**< length of the real FFT. */
  1941. uint16_t fftLenBy2; /**< length of the complex FFT. */
  1942. uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
  1943. uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
  1944. uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
  1945. float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
  1946. float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
  1947. arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
  1948. } arm_rfft_instance_f32;
  1949. arm_status arm_rfft_init_f32(
  1950. arm_rfft_instance_f32 * S,
  1951. arm_cfft_radix4_instance_f32 * S_CFFT,
  1952. uint32_t fftLenReal,
  1953. uint32_t ifftFlagR,
  1954. uint32_t bitReverseFlag);
  1955. void arm_rfft_f32(
  1956. const arm_rfft_instance_f32 * S,
  1957. float32_t * pSrc,
  1958. float32_t * pDst);
  1959. /**
  1960. * @brief Instance structure for the floating-point RFFT/RIFFT function.
  1961. */
  1962. typedef struct
  1963. {
  1964. arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
  1965. uint16_t fftLenRFFT; /**< length of the real sequence */
  1966. float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
  1967. } arm_rfft_fast_instance_f32 ;
  1968. arm_status arm_rfft_fast_init_f32 (
  1969. arm_rfft_fast_instance_f32 * S,
  1970. uint16_t fftLen);
  1971. void arm_rfft_fast_f32(
  1972. arm_rfft_fast_instance_f32 * S,
  1973. float32_t * p, float32_t * pOut,
  1974. uint8_t ifftFlag);
  1975. /**
  1976. * @brief Instance structure for the floating-point DCT4/IDCT4 function.
  1977. */
  1978. typedef struct
  1979. {
  1980. uint16_t N; /**< length of the DCT4. */
  1981. uint16_t Nby2; /**< half of the length of the DCT4. */
  1982. float32_t normalize; /**< normalizing factor. */
  1983. float32_t *pTwiddle; /**< points to the twiddle factor table. */
  1984. float32_t *pCosFactor; /**< points to the cosFactor table. */
  1985. arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
  1986. arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
  1987. } arm_dct4_instance_f32;
  1988. /**
  1989. * @brief Initialization function for the floating-point DCT4/IDCT4.
  1990. * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
  1991. * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
  1992. * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
  1993. * @param[in] N length of the DCT4.
  1994. * @param[in] Nby2 half of the length of the DCT4.
  1995. * @param[in] normalize normalizing factor.
  1996. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
  1997. */
  1998. arm_status arm_dct4_init_f32(
  1999. arm_dct4_instance_f32 * S,
  2000. arm_rfft_instance_f32 * S_RFFT,
  2001. arm_cfft_radix4_instance_f32 * S_CFFT,
  2002. uint16_t N,
  2003. uint16_t Nby2,
  2004. float32_t normalize);
  2005. /**
  2006. * @brief Processing function for the floating-point DCT4/IDCT4.
  2007. * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
  2008. * @param[in] *pState points to state buffer.
  2009. * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
  2010. * @return none.
  2011. */
  2012. void arm_dct4_f32(
  2013. const arm_dct4_instance_f32 * S,
  2014. float32_t * pState,
  2015. float32_t * pInlineBuffer);
  2016. /**
  2017. * @brief Instance structure for the Q31 DCT4/IDCT4 function.
  2018. */
  2019. typedef struct
  2020. {
  2021. uint16_t N; /**< length of the DCT4. */
  2022. uint16_t Nby2; /**< half of the length of the DCT4. */
  2023. q31_t normalize; /**< normalizing factor. */
  2024. q31_t *pTwiddle; /**< points to the twiddle factor table. */
  2025. q31_t *pCosFactor; /**< points to the cosFactor table. */
  2026. arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
  2027. arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
  2028. } arm_dct4_instance_q31;
  2029. /**
  2030. * @brief Initialization function for the Q31 DCT4/IDCT4.
  2031. * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
  2032. * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
  2033. * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
  2034. * @param[in] N length of the DCT4.
  2035. * @param[in] Nby2 half of the length of the DCT4.
  2036. * @param[in] normalize normalizing factor.
  2037. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
  2038. */
  2039. arm_status arm_dct4_init_q31(
  2040. arm_dct4_instance_q31 * S,
  2041. arm_rfft_instance_q31 * S_RFFT,
  2042. arm_cfft_radix4_instance_q31 * S_CFFT,
  2043. uint16_t N,
  2044. uint16_t Nby2,
  2045. q31_t normalize);
  2046. /**
  2047. * @brief Processing function for the Q31 DCT4/IDCT4.
  2048. * @param[in] *S points to an instance of the Q31 DCT4 structure.
  2049. * @param[in] *pState points to state buffer.
  2050. * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
  2051. * @return none.
  2052. */
  2053. void arm_dct4_q31(
  2054. const arm_dct4_instance_q31 * S,
  2055. q31_t * pState,
  2056. q31_t * pInlineBuffer);
  2057. /**
  2058. * @brief Instance structure for the Q15 DCT4/IDCT4 function.
  2059. */
  2060. typedef struct
  2061. {
  2062. uint16_t N; /**< length of the DCT4. */
  2063. uint16_t Nby2; /**< half of the length of the DCT4. */
  2064. q15_t normalize; /**< normalizing factor. */
  2065. q15_t *pTwiddle; /**< points to the twiddle factor table. */
  2066. q15_t *pCosFactor; /**< points to the cosFactor table. */
  2067. arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
  2068. arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
  2069. } arm_dct4_instance_q15;
  2070. /**
  2071. * @brief Initialization function for the Q15 DCT4/IDCT4.
  2072. * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
  2073. * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
  2074. * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
  2075. * @param[in] N length of the DCT4.
  2076. * @param[in] Nby2 half of the length of the DCT4.
  2077. * @param[in] normalize normalizing factor.
  2078. * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
  2079. */
  2080. arm_status arm_dct4_init_q15(
  2081. arm_dct4_instance_q15 * S,
  2082. arm_rfft_instance_q15 * S_RFFT,
  2083. arm_cfft_radix4_instance_q15 * S_CFFT,
  2084. uint16_t N,
  2085. uint16_t Nby2,
  2086. q15_t normalize);
  2087. /**
  2088. * @brief Processing function for the Q15 DCT4/IDCT4.
  2089. * @param[in] *S points to an instance of the Q15 DCT4 structure.
  2090. * @param[in] *pState points to state buffer.
  2091. * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
  2092. * @return none.
  2093. */
  2094. void arm_dct4_q15(
  2095. const arm_dct4_instance_q15 * S,
  2096. q15_t * pState,
  2097. q15_t * pInlineBuffer);
  2098. /**
  2099. * @brief Floating-point vector addition.
  2100. * @param[in] *pSrcA points to the first input vector
  2101. * @param[in] *pSrcB points to the second input vector
  2102. * @param[out] *pDst points to the output vector
  2103. * @param[in] blockSize number of samples in each vector
  2104. * @return none.
  2105. */
  2106. void arm_add_f32(
  2107. float32_t * pSrcA,
  2108. float32_t * pSrcB,
  2109. float32_t * pDst,
  2110. uint32_t blockSize);
  2111. /**
  2112. * @brief Q7 vector addition.
  2113. * @param[in] *pSrcA points to the first input vector
  2114. * @param[in] *pSrcB points to the second input vector
  2115. * @param[out] *pDst points to the output vector
  2116. * @param[in] blockSize number of samples in each vector
  2117. * @return none.
  2118. */
  2119. void arm_add_q7(
  2120. q7_t * pSrcA,
  2121. q7_t * pSrcB,
  2122. q7_t * pDst,
  2123. uint32_t blockSize);
  2124. /**
  2125. * @brief Q15 vector addition.
  2126. * @param[in] *pSrcA points to the first input vector
  2127. * @param[in] *pSrcB points to the second input vector
  2128. * @param[out] *pDst points to the output vector
  2129. * @param[in] blockSize number of samples in each vector
  2130. * @return none.
  2131. */
  2132. void arm_add_q15(
  2133. q15_t * pSrcA,
  2134. q15_t * pSrcB,
  2135. q15_t * pDst,
  2136. uint32_t blockSize);
  2137. /**
  2138. * @brief Q31 vector addition.
  2139. * @param[in] *pSrcA points to the first input vector
  2140. * @param[in] *pSrcB points to the second input vector
  2141. * @param[out] *pDst points to the output vector
  2142. * @param[in] blockSize number of samples in each vector
  2143. * @return none.
  2144. */
  2145. void arm_add_q31(
  2146. q31_t * pSrcA,
  2147. q31_t * pSrcB,
  2148. q31_t * pDst,
  2149. uint32_t blockSize);
  2150. /**
  2151. * @brief Floating-point vector subtraction.
  2152. * @param[in] *pSrcA points to the first input vector
  2153. * @param[in] *pSrcB points to the second input vector
  2154. * @param[out] *pDst points to the output vector
  2155. * @param[in] blockSize number of samples in each vector
  2156. * @return none.
  2157. */
  2158. void arm_sub_f32(
  2159. float32_t * pSrcA,
  2160. float32_t * pSrcB,
  2161. float32_t * pDst,
  2162. uint32_t blockSize);
  2163. /**
  2164. * @brief Q7 vector subtraction.
  2165. * @param[in] *pSrcA points to the first input vector
  2166. * @param[in] *pSrcB points to the second input vector
  2167. * @param[out] *pDst points to the output vector
  2168. * @param[in] blockSize number of samples in each vector
  2169. * @return none.
  2170. */
  2171. void arm_sub_q7(
  2172. q7_t * pSrcA,
  2173. q7_t * pSrcB,
  2174. q7_t * pDst,
  2175. uint32_t blockSize);
  2176. /**
  2177. * @brief Q15 vector subtraction.
  2178. * @param[in] *pSrcA points to the first input vector
  2179. * @param[in] *pSrcB points to the second input vector
  2180. * @param[out] *pDst points to the output vector
  2181. * @param[in] blockSize number of samples in each vector
  2182. * @return none.
  2183. */
  2184. void arm_sub_q15(
  2185. q15_t * pSrcA,
  2186. q15_t * pSrcB,
  2187. q15_t * pDst,
  2188. uint32_t blockSize);
  2189. /**
  2190. * @brief Q31 vector subtraction.
  2191. * @param[in] *pSrcA points to the first input vector
  2192. * @param[in] *pSrcB points to the second input vector
  2193. * @param[out] *pDst points to the output vector
  2194. * @param[in] blockSize number of samples in each vector
  2195. * @return none.
  2196. */
  2197. void arm_sub_q31(
  2198. q31_t * pSrcA,
  2199. q31_t * pSrcB,
  2200. q31_t * pDst,
  2201. uint32_t blockSize);
  2202. /**
  2203. * @brief Multiplies a floating-point vector by a scalar.
  2204. * @param[in] *pSrc points to the input vector
  2205. * @param[in] scale scale factor to be applied
  2206. * @param[out] *pDst points to the output vector
  2207. * @param[in] blockSize number of samples in the vector
  2208. * @return none.
  2209. */
  2210. void arm_scale_f32(
  2211. float32_t * pSrc,
  2212. float32_t scale,
  2213. float32_t * pDst,
  2214. uint32_t blockSize);
  2215. /**
  2216. * @brief Multiplies a Q7 vector by a scalar.
  2217. * @param[in] *pSrc points to the input vector
  2218. * @param[in] scaleFract fractional portion of the scale value
  2219. * @param[in] shift number of bits to shift the result by
  2220. * @param[out] *pDst points to the output vector
  2221. * @param[in] blockSize number of samples in the vector
  2222. * @return none.
  2223. */
  2224. void arm_scale_q7(
  2225. q7_t * pSrc,
  2226. q7_t scaleFract,
  2227. int8_t shift,
  2228. q7_t * pDst,
  2229. uint32_t blockSize);
  2230. /**
  2231. * @brief Multiplies a Q15 vector by a scalar.
  2232. * @param[in] *pSrc points to the input vector
  2233. * @param[in] scaleFract fractional portion of the scale value
  2234. * @param[in] shift number of bits to shift the result by
  2235. * @param[out] *pDst points to the output vector
  2236. * @param[in] blockSize number of samples in the vector
  2237. * @return none.
  2238. */
  2239. void arm_scale_q15(
  2240. q15_t * pSrc,
  2241. q15_t scaleFract,
  2242. int8_t shift,
  2243. q15_t * pDst,
  2244. uint32_t blockSize);
  2245. /**
  2246. * @brief Multiplies a Q31 vector by a scalar.
  2247. * @param[in] *pSrc points to the input vector
  2248. * @param[in] scaleFract fractional portion of the scale value
  2249. * @param[in] shift number of bits to shift the result by
  2250. * @param[out] *pDst points to the output vector
  2251. * @param[in] blockSize number of samples in the vector
  2252. * @return none.
  2253. */
  2254. void arm_scale_q31(
  2255. q31_t * pSrc,
  2256. q31_t scaleFract,
  2257. int8_t shift,
  2258. q31_t * pDst,
  2259. uint32_t blockSize);
  2260. /**
  2261. * @brief Q7 vector absolute value.
  2262. * @param[in] *pSrc points to the input buffer
  2263. * @param[out] *pDst points to the output buffer
  2264. * @param[in] blockSize number of samples in each vector
  2265. * @return none.
  2266. */
  2267. void arm_abs_q7(
  2268. q7_t * pSrc,
  2269. q7_t * pDst,
  2270. uint32_t blockSize);
  2271. /**
  2272. * @brief Floating-point vector absolute value.
  2273. * @param[in] *pSrc points to the input buffer
  2274. * @param[out] *pDst points to the output buffer
  2275. * @param[in] blockSize number of samples in each vector
  2276. * @return none.
  2277. */
  2278. void arm_abs_f32(
  2279. float32_t * pSrc,
  2280. float32_t * pDst,
  2281. uint32_t blockSize);
  2282. /**
  2283. * @brief Q15 vector absolute value.
  2284. * @param[in] *pSrc points to the input buffer
  2285. * @param[out] *pDst points to the output buffer
  2286. * @param[in] blockSize number of samples in each vector
  2287. * @return none.
  2288. */
  2289. void arm_abs_q15(
  2290. q15_t * pSrc,
  2291. q15_t * pDst,
  2292. uint32_t blockSize);
  2293. /**
  2294. * @brief Q31 vector absolute value.
  2295. * @param[in] *pSrc points to the input buffer
  2296. * @param[out] *pDst points to the output buffer
  2297. * @param[in] blockSize number of samples in each vector
  2298. * @return none.
  2299. */
  2300. void arm_abs_q31(
  2301. q31_t * pSrc,
  2302. q31_t * pDst,
  2303. uint32_t blockSize);
  2304. /**
  2305. * @brief Dot product of floating-point vectors.
  2306. * @param[in] *pSrcA points to the first input vector
  2307. * @param[in] *pSrcB points to the second input vector
  2308. * @param[in] blockSize number of samples in each vector
  2309. * @param[out] *result output result returned here
  2310. * @return none.
  2311. */
  2312. void arm_dot_prod_f32(
  2313. float32_t * pSrcA,
  2314. float32_t * pSrcB,
  2315. uint32_t blockSize,
  2316. float32_t * result);
  2317. /**
  2318. * @brief Dot product of Q7 vectors.
  2319. * @param[in] *pSrcA points to the first input vector
  2320. * @param[in] *pSrcB points to the second input vector
  2321. * @param[in] blockSize number of samples in each vector
  2322. * @param[out] *result output result returned here
  2323. * @return none.
  2324. */
  2325. void arm_dot_prod_q7(
  2326. q7_t * pSrcA,
  2327. q7_t * pSrcB,
  2328. uint32_t blockSize,
  2329. q31_t * result);
  2330. /**
  2331. * @brief Dot product of Q15 vectors.
  2332. * @param[in] *pSrcA points to the first input vector
  2333. * @param[in] *pSrcB points to the second input vector
  2334. * @param[in] blockSize number of samples in each vector
  2335. * @param[out] *result output result returned here
  2336. * @return none.
  2337. */
  2338. void arm_dot_prod_q15(
  2339. q15_t * pSrcA,
  2340. q15_t * pSrcB,
  2341. uint32_t blockSize,
  2342. q63_t * result);
  2343. /**
  2344. * @brief Dot product of Q31 vectors.
  2345. * @param[in] *pSrcA points to the first input vector
  2346. * @param[in] *pSrcB points to the second input vector
  2347. * @param[in] blockSize number of samples in each vector
  2348. * @param[out] *result output result returned here
  2349. * @return none.
  2350. */
  2351. void arm_dot_prod_q31(
  2352. q31_t * pSrcA,
  2353. q31_t * pSrcB,
  2354. uint32_t blockSize,
  2355. q63_t * result);
  2356. /**
  2357. * @brief Shifts the elements of a Q7 vector a specified number of bits.
  2358. * @param[in] *pSrc points to the input vector
  2359. * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
  2360. * @param[out] *pDst points to the output vector
  2361. * @param[in] blockSize number of samples in the vector
  2362. * @return none.
  2363. */
  2364. void arm_shift_q7(
  2365. q7_t * pSrc,
  2366. int8_t shiftBits,
  2367. q7_t * pDst,
  2368. uint32_t blockSize);
  2369. /**
  2370. * @brief Shifts the elements of a Q15 vector a specified number of bits.
  2371. * @param[in] *pSrc points to the input vector
  2372. * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
  2373. * @param[out] *pDst points to the output vector
  2374. * @param[in] blockSize number of samples in the vector
  2375. * @return none.
  2376. */
  2377. void arm_shift_q15(
  2378. q15_t * pSrc,
  2379. int8_t shiftBits,
  2380. q15_t * pDst,
  2381. uint32_t blockSize);
  2382. /**
  2383. * @brief Shifts the elements of a Q31 vector a specified number of bits.
  2384. * @param[in] *pSrc points to the input vector
  2385. * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
  2386. * @param[out] *pDst points to the output vector
  2387. * @param[in] blockSize number of samples in the vector
  2388. * @return none.
  2389. */
  2390. void arm_shift_q31(
  2391. q31_t * pSrc,
  2392. int8_t shiftBits,
  2393. q31_t * pDst,
  2394. uint32_t blockSize);
  2395. /**
  2396. * @brief Adds a constant offset to a floating-point vector.
  2397. * @param[in] *pSrc points to the input vector
  2398. * @param[in] offset is the offset to be added
  2399. * @param[out] *pDst points to the output vector
  2400. * @param[in] blockSize number of samples in the vector
  2401. * @return none.
  2402. */
  2403. void arm_offset_f32(
  2404. float32_t * pSrc,
  2405. float32_t offset,
  2406. float32_t * pDst,
  2407. uint32_t blockSize);
  2408. /**
  2409. * @brief Adds a constant offset to a Q7 vector.
  2410. * @param[in] *pSrc points to the input vector
  2411. * @param[in] offset is the offset to be added
  2412. * @param[out] *pDst points to the output vector
  2413. * @param[in] blockSize number of samples in the vector
  2414. * @return none.
  2415. */
  2416. void arm_offset_q7(
  2417. q7_t * pSrc,
  2418. q7_t offset,
  2419. q7_t * pDst,
  2420. uint32_t blockSize);
  2421. /**
  2422. * @brief Adds a constant offset to a Q15 vector.
  2423. * @param[in] *pSrc points to the input vector
  2424. * @param[in] offset is the offset to be added
  2425. * @param[out] *pDst points to the output vector
  2426. * @param[in] blockSize number of samples in the vector
  2427. * @return none.
  2428. */
  2429. void arm_offset_q15(
  2430. q15_t * pSrc,
  2431. q15_t offset,
  2432. q15_t * pDst,
  2433. uint32_t blockSize);
  2434. /**
  2435. * @brief Adds a constant offset to a Q31 vector.
  2436. * @param[in] *pSrc points to the input vector
  2437. * @param[in] offset is the offset to be added
  2438. * @param[out] *pDst points to the output vector
  2439. * @param[in] blockSize number of samples in the vector
  2440. * @return none.
  2441. */
  2442. void arm_offset_q31(
  2443. q31_t * pSrc,
  2444. q31_t offset,
  2445. q31_t * pDst,
  2446. uint32_t blockSize);
  2447. /**
  2448. * @brief Negates the elements of a floating-point vector.
  2449. * @param[in] *pSrc points to the input vector
  2450. * @param[out] *pDst points to the output vector
  2451. * @param[in] blockSize number of samples in the vector
  2452. * @return none.
  2453. */
  2454. void arm_negate_f32(
  2455. float32_t * pSrc,
  2456. float32_t * pDst,
  2457. uint32_t blockSize);
  2458. /**
  2459. * @brief Negates the elements of a Q7 vector.
  2460. * @param[in] *pSrc points to the input vector
  2461. * @param[out] *pDst points to the output vector
  2462. * @param[in] blockSize number of samples in the vector
  2463. * @return none.
  2464. */
  2465. void arm_negate_q7(
  2466. q7_t * pSrc,
  2467. q7_t * pDst,
  2468. uint32_t blockSize);
  2469. /**
  2470. * @brief Negates the elements of a Q15 vector.
  2471. * @param[in] *pSrc points to the input vector
  2472. * @param[out] *pDst points to the output vector
  2473. * @param[in] blockSize number of samples in the vector
  2474. * @return none.
  2475. */
  2476. void arm_negate_q15(
  2477. q15_t * pSrc,
  2478. q15_t * pDst,
  2479. uint32_t blockSize);
  2480. /**
  2481. * @brief Negates the elements of a Q31 vector.
  2482. * @param[in] *pSrc points to the input vector
  2483. * @param[out] *pDst points to the output vector
  2484. * @param[in] blockSize number of samples in the vector
  2485. * @return none.
  2486. */
  2487. void arm_negate_q31(
  2488. q31_t * pSrc,
  2489. q31_t * pDst,
  2490. uint32_t blockSize);
  2491. /**
  2492. * @brief Copies the elements of a floating-point vector.
  2493. * @param[in] *pSrc input pointer
  2494. * @param[out] *pDst output pointer
  2495. * @param[in] blockSize number of samples to process
  2496. * @return none.
  2497. */
  2498. void arm_copy_f32(
  2499. float32_t * pSrc,
  2500. float32_t * pDst,
  2501. uint32_t blockSize);
  2502. /**
  2503. * @brief Copies the elements of a Q7 vector.
  2504. * @param[in] *pSrc input pointer
  2505. * @param[out] *pDst output pointer
  2506. * @param[in] blockSize number of samples to process
  2507. * @return none.
  2508. */
  2509. void arm_copy_q7(
  2510. q7_t * pSrc,
  2511. q7_t * pDst,
  2512. uint32_t blockSize);
  2513. /**
  2514. * @brief Copies the elements of a Q15 vector.
  2515. * @param[in] *pSrc input pointer
  2516. * @param[out] *pDst output pointer
  2517. * @param[in] blockSize number of samples to process
  2518. * @return none.
  2519. */
  2520. void arm_copy_q15(
  2521. q15_t * pSrc,
  2522. q15_t * pDst,
  2523. uint32_t blockSize);
  2524. /**
  2525. * @brief Copies the elements of a Q31 vector.
  2526. * @param[in] *pSrc input pointer
  2527. * @param[out] *pDst output pointer
  2528. * @param[in] blockSize number of samples to process
  2529. * @return none.
  2530. */
  2531. void arm_copy_q31(
  2532. q31_t * pSrc,
  2533. q31_t * pDst,
  2534. uint32_t blockSize);
  2535. /**
  2536. * @brief Fills a constant value into a floating-point vector.
  2537. * @param[in] value input value to be filled
  2538. * @param[out] *pDst output pointer
  2539. * @param[in] blockSize number of samples to process
  2540. * @return none.
  2541. */
  2542. void arm_fill_f32(
  2543. float32_t value,
  2544. float32_t * pDst,
  2545. uint32_t blockSize);
  2546. /**
  2547. * @brief Fills a constant value into a Q7 vector.
  2548. * @param[in] value input value to be filled
  2549. * @param[out] *pDst output pointer
  2550. * @param[in] blockSize number of samples to process
  2551. * @return none.
  2552. */
  2553. void arm_fill_q7(
  2554. q7_t value,
  2555. q7_t * pDst,
  2556. uint32_t blockSize);
  2557. /**
  2558. * @brief Fills a constant value into a Q15 vector.
  2559. * @param[in] value input value to be filled
  2560. * @param[out] *pDst output pointer
  2561. * @param[in] blockSize number of samples to process
  2562. * @return none.
  2563. */
  2564. void arm_fill_q15(
  2565. q15_t value,
  2566. q15_t * pDst,
  2567. uint32_t blockSize);
  2568. /**
  2569. * @brief Fills a constant value into a Q31 vector.
  2570. * @param[in] value input value to be filled
  2571. * @param[out] *pDst output pointer
  2572. * @param[in] blockSize number of samples to process
  2573. * @return none.
  2574. */
  2575. void arm_fill_q31(
  2576. q31_t value,
  2577. q31_t * pDst,
  2578. uint32_t blockSize);
  2579. /**
  2580. * @brief Convolution of floating-point sequences.
  2581. * @param[in] *pSrcA points to the first input sequence.
  2582. * @param[in] srcALen length of the first input sequence.
  2583. * @param[in] *pSrcB points to the second input sequence.
  2584. * @param[in] srcBLen length of the second input sequence.
  2585. * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
  2586. * @return none.
  2587. */
  2588. void arm_conv_f32(
  2589. float32_t * pSrcA,
  2590. uint32_t srcALen,
  2591. float32_t * pSrcB,
  2592. uint32_t srcBLen,
  2593. float32_t * pDst);
  2594. /**
  2595. * @brief Convolution of Q15 sequences.
  2596. * @param[in] *pSrcA points to the first input sequence.
  2597. * @param[in] srcALen length of the first input sequence.
  2598. * @param[in] *pSrcB points to the second input sequence.
  2599. * @param[in] srcBLen length of the second input sequence.
  2600. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2601. * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2602. * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2603. * @return none.
  2604. */
  2605. void arm_conv_opt_q15(
  2606. q15_t * pSrcA,
  2607. uint32_t srcALen,
  2608. q15_t * pSrcB,
  2609. uint32_t srcBLen,
  2610. q15_t * pDst,
  2611. q15_t * pScratch1,
  2612. q15_t * pScratch2);
  2613. /**
  2614. * @brief Convolution of Q15 sequences.
  2615. * @param[in] *pSrcA points to the first input sequence.
  2616. * @param[in] srcALen length of the first input sequence.
  2617. * @param[in] *pSrcB points to the second input sequence.
  2618. * @param[in] srcBLen length of the second input sequence.
  2619. * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
  2620. * @return none.
  2621. */
  2622. void arm_conv_q15(
  2623. q15_t * pSrcA,
  2624. uint32_t srcALen,
  2625. q15_t * pSrcB,
  2626. uint32_t srcBLen,
  2627. q15_t * pDst);
  2628. /**
  2629. * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2630. * @param[in] *pSrcA points to the first input sequence.
  2631. * @param[in] srcALen length of the first input sequence.
  2632. * @param[in] *pSrcB points to the second input sequence.
  2633. * @param[in] srcBLen length of the second input sequence.
  2634. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2635. * @return none.
  2636. */
  2637. void arm_conv_fast_q15(
  2638. q15_t * pSrcA,
  2639. uint32_t srcALen,
  2640. q15_t * pSrcB,
  2641. uint32_t srcBLen,
  2642. q15_t * pDst);
  2643. /**
  2644. * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2645. * @param[in] *pSrcA points to the first input sequence.
  2646. * @param[in] srcALen length of the first input sequence.
  2647. * @param[in] *pSrcB points to the second input sequence.
  2648. * @param[in] srcBLen length of the second input sequence.
  2649. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2650. * @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2651. * @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2652. * @return none.
  2653. */
  2654. void arm_conv_fast_opt_q15(
  2655. q15_t * pSrcA,
  2656. uint32_t srcALen,
  2657. q15_t * pSrcB,
  2658. uint32_t srcBLen,
  2659. q15_t * pDst,
  2660. q15_t * pScratch1,
  2661. q15_t * pScratch2);
  2662. /**
  2663. * @brief Convolution of Q31 sequences.
  2664. * @param[in] *pSrcA points to the first input sequence.
  2665. * @param[in] srcALen length of the first input sequence.
  2666. * @param[in] *pSrcB points to the second input sequence.
  2667. * @param[in] srcBLen length of the second input sequence.
  2668. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2669. * @return none.
  2670. */
  2671. void arm_conv_q31(
  2672. q31_t * pSrcA,
  2673. uint32_t srcALen,
  2674. q31_t * pSrcB,
  2675. uint32_t srcBLen,
  2676. q31_t * pDst);
  2677. /**
  2678. * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
  2679. * @param[in] *pSrcA points to the first input sequence.
  2680. * @param[in] srcALen length of the first input sequence.
  2681. * @param[in] *pSrcB points to the second input sequence.
  2682. * @param[in] srcBLen length of the second input sequence.
  2683. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2684. * @return none.
  2685. */
  2686. void arm_conv_fast_q31(
  2687. q31_t * pSrcA,
  2688. uint32_t srcALen,
  2689. q31_t * pSrcB,
  2690. uint32_t srcBLen,
  2691. q31_t * pDst);
  2692. /**
  2693. * @brief Convolution of Q7 sequences.
  2694. * @param[in] *pSrcA points to the first input sequence.
  2695. * @param[in] srcALen length of the first input sequence.
  2696. * @param[in] *pSrcB points to the second input sequence.
  2697. * @param[in] srcBLen length of the second input sequence.
  2698. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2699. * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2700. * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
  2701. * @return none.
  2702. */
  2703. void arm_conv_opt_q7(
  2704. q7_t * pSrcA,
  2705. uint32_t srcALen,
  2706. q7_t * pSrcB,
  2707. uint32_t srcBLen,
  2708. q7_t * pDst,
  2709. q15_t * pScratch1,
  2710. q15_t * pScratch2);
  2711. /**
  2712. * @brief Convolution of Q7 sequences.
  2713. * @param[in] *pSrcA points to the first input sequence.
  2714. * @param[in] srcALen length of the first input sequence.
  2715. * @param[in] *pSrcB points to the second input sequence.
  2716. * @param[in] srcBLen length of the second input sequence.
  2717. * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
  2718. * @return none.
  2719. */
  2720. void arm_conv_q7(
  2721. q7_t * pSrcA,
  2722. uint32_t srcALen,
  2723. q7_t * pSrcB,
  2724. uint32_t srcBLen,
  2725. q7_t * pDst);
  2726. /**
  2727. * @brief Partial convolution of floating-point sequences.
  2728. * @param[in] *pSrcA points to the first input sequence.
  2729. * @param[in] srcALen length of the first input sequence.
  2730. * @param[in] *pSrcB points to the second input sequence.
  2731. * @param[in] srcBLen length of the second input sequence.
  2732. * @param[out] *pDst points to the block of output data
  2733. * @param[in] firstIndex is the first output sample to start with.
  2734. * @param[in] numPoints is the number of output points to be computed.
  2735. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2736. */
  2737. arm_status arm_conv_partial_f32(
  2738. float32_t * pSrcA,
  2739. uint32_t srcALen,
  2740. float32_t * pSrcB,
  2741. uint32_t srcBLen,
  2742. float32_t * pDst,
  2743. uint32_t firstIndex,
  2744. uint32_t numPoints);
  2745. /**
  2746. * @brief Partial convolution of Q15 sequences.
  2747. * @param[in] *pSrcA points to the first input sequence.
  2748. * @param[in] srcALen length of the first input sequence.
  2749. * @param[in] *pSrcB points to the second input sequence.
  2750. * @param[in] srcBLen length of the second input sequence.
  2751. * @param[out] *pDst points to the block of output data
  2752. * @param[in] firstIndex is the first output sample to start with.
  2753. * @param[in] numPoints is the number of output points to be computed.
  2754. * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2755. * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2756. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2757. */
  2758. arm_status arm_conv_partial_opt_q15(
  2759. q15_t * pSrcA,
  2760. uint32_t srcALen,
  2761. q15_t * pSrcB,
  2762. uint32_t srcBLen,
  2763. q15_t * pDst,
  2764. uint32_t firstIndex,
  2765. uint32_t numPoints,
  2766. q15_t * pScratch1,
  2767. q15_t * pScratch2);
  2768. /**
  2769. * @brief Partial convolution of Q15 sequences.
  2770. * @param[in] *pSrcA points to the first input sequence.
  2771. * @param[in] srcALen length of the first input sequence.
  2772. * @param[in] *pSrcB points to the second input sequence.
  2773. * @param[in] srcBLen length of the second input sequence.
  2774. * @param[out] *pDst points to the block of output data
  2775. * @param[in] firstIndex is the first output sample to start with.
  2776. * @param[in] numPoints is the number of output points to be computed.
  2777. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2778. */
  2779. arm_status arm_conv_partial_q15(
  2780. q15_t * pSrcA,
  2781. uint32_t srcALen,
  2782. q15_t * pSrcB,
  2783. uint32_t srcBLen,
  2784. q15_t * pDst,
  2785. uint32_t firstIndex,
  2786. uint32_t numPoints);
  2787. /**
  2788. * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2789. * @param[in] *pSrcA points to the first input sequence.
  2790. * @param[in] srcALen length of the first input sequence.
  2791. * @param[in] *pSrcB points to the second input sequence.
  2792. * @param[in] srcBLen length of the second input sequence.
  2793. * @param[out] *pDst points to the block of output data
  2794. * @param[in] firstIndex is the first output sample to start with.
  2795. * @param[in] numPoints is the number of output points to be computed.
  2796. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2797. */
  2798. arm_status arm_conv_partial_fast_q15(
  2799. q15_t * pSrcA,
  2800. uint32_t srcALen,
  2801. q15_t * pSrcB,
  2802. uint32_t srcBLen,
  2803. q15_t * pDst,
  2804. uint32_t firstIndex,
  2805. uint32_t numPoints);
  2806. /**
  2807. * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
  2808. * @param[in] *pSrcA points to the first input sequence.
  2809. * @param[in] srcALen length of the first input sequence.
  2810. * @param[in] *pSrcB points to the second input sequence.
  2811. * @param[in] srcBLen length of the second input sequence.
  2812. * @param[out] *pDst points to the block of output data
  2813. * @param[in] firstIndex is the first output sample to start with.
  2814. * @param[in] numPoints is the number of output points to be computed.
  2815. * @param[in] * pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2816. * @param[in] * pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
  2817. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2818. */
  2819. arm_status arm_conv_partial_fast_opt_q15(
  2820. q15_t * pSrcA,
  2821. uint32_t srcALen,
  2822. q15_t * pSrcB,
  2823. uint32_t srcBLen,
  2824. q15_t * pDst,
  2825. uint32_t firstIndex,
  2826. uint32_t numPoints,
  2827. q15_t * pScratch1,
  2828. q15_t * pScratch2);
  2829. /**
  2830. * @brief Partial convolution of Q31 sequences.
  2831. * @param[in] *pSrcA points to the first input sequence.
  2832. * @param[in] srcALen length of the first input sequence.
  2833. * @param[in] *pSrcB points to the second input sequence.
  2834. * @param[in] srcBLen length of the second input sequence.
  2835. * @param[out] *pDst points to the block of output data
  2836. * @param[in] firstIndex is the first output sample to start with.
  2837. * @param[in] numPoints is the number of output points to be computed.
  2838. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2839. */
  2840. arm_status arm_conv_partial_q31(
  2841. q31_t * pSrcA,
  2842. uint32_t srcALen,
  2843. q31_t * pSrcB,
  2844. uint32_t srcBLen,
  2845. q31_t * pDst,
  2846. uint32_t firstIndex,
  2847. uint32_t numPoints);
  2848. /**
  2849. * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
  2850. * @param[in] *pSrcA points to the first input sequence.
  2851. * @param[in] srcALen length of the first input sequence.
  2852. * @param[in] *pSrcB points to the second input sequence.
  2853. * @param[in] srcBLen length of the second input sequence.
  2854. * @param[out] *pDst points to the block of output data
  2855. * @param[in] firstIndex is the first output sample to start with.
  2856. * @param[in] numPoints is the number of output points to be computed.
  2857. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2858. */
  2859. arm_status arm_conv_partial_fast_q31(
  2860. q31_t * pSrcA,
  2861. uint32_t srcALen,
  2862. q31_t * pSrcB,
  2863. uint32_t srcBLen,
  2864. q31_t * pDst,
  2865. uint32_t firstIndex,
  2866. uint32_t numPoints);
  2867. /**
  2868. * @brief Partial convolution of Q7 sequences
  2869. * @param[in] *pSrcA points to the first input sequence.
  2870. * @param[in] srcALen length of the first input sequence.
  2871. * @param[in] *pSrcB points to the second input sequence.
  2872. * @param[in] srcBLen length of the second input sequence.
  2873. * @param[out] *pDst points to the block of output data
  2874. * @param[in] firstIndex is the first output sample to start with.
  2875. * @param[in] numPoints is the number of output points to be computed.
  2876. * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  2877. * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
  2878. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2879. */
  2880. arm_status arm_conv_partial_opt_q7(
  2881. q7_t * pSrcA,
  2882. uint32_t srcALen,
  2883. q7_t * pSrcB,
  2884. uint32_t srcBLen,
  2885. q7_t * pDst,
  2886. uint32_t firstIndex,
  2887. uint32_t numPoints,
  2888. q15_t * pScratch1,
  2889. q15_t * pScratch2);
  2890. /**
  2891. * @brief Partial convolution of Q7 sequences.
  2892. * @param[in] *pSrcA points to the first input sequence.
  2893. * @param[in] srcALen length of the first input sequence.
  2894. * @param[in] *pSrcB points to the second input sequence.
  2895. * @param[in] srcBLen length of the second input sequence.
  2896. * @param[out] *pDst points to the block of output data
  2897. * @param[in] firstIndex is the first output sample to start with.
  2898. * @param[in] numPoints is the number of output points to be computed.
  2899. * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
  2900. */
  2901. arm_status arm_conv_partial_q7(
  2902. q7_t * pSrcA,
  2903. uint32_t srcALen,
  2904. q7_t * pSrcB,
  2905. uint32_t srcBLen,
  2906. q7_t * pDst,
  2907. uint32_t firstIndex,
  2908. uint32_t numPoints);
  2909. /**
  2910. * @brief Instance structure for the Q15 FIR decimator.
  2911. */
  2912. typedef struct
  2913. {
  2914. uint8_t M; /**< decimation factor. */
  2915. uint16_t numTaps; /**< number of coefficients in the filter. */
  2916. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  2917. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  2918. } arm_fir_decimate_instance_q15;
  2919. /**
  2920. * @brief Instance structure for the Q31 FIR decimator.
  2921. */
  2922. typedef struct
  2923. {
  2924. uint8_t M; /**< decimation factor. */
  2925. uint16_t numTaps; /**< number of coefficients in the filter. */
  2926. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  2927. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  2928. } arm_fir_decimate_instance_q31;
  2929. /**
  2930. * @brief Instance structure for the floating-point FIR decimator.
  2931. */
  2932. typedef struct
  2933. {
  2934. uint8_t M; /**< decimation factor. */
  2935. uint16_t numTaps; /**< number of coefficients in the filter. */
  2936. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  2937. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  2938. } arm_fir_decimate_instance_f32;
  2939. /**
  2940. * @brief Processing function for the floating-point FIR decimator.
  2941. * @param[in] *S points to an instance of the floating-point FIR decimator structure.
  2942. * @param[in] *pSrc points to the block of input data.
  2943. * @param[out] *pDst points to the block of output data
  2944. * @param[in] blockSize number of input samples to process per call.
  2945. * @return none
  2946. */
  2947. void arm_fir_decimate_f32(
  2948. const arm_fir_decimate_instance_f32 * S,
  2949. float32_t * pSrc,
  2950. float32_t * pDst,
  2951. uint32_t blockSize);
  2952. /**
  2953. * @brief Initialization function for the floating-point FIR decimator.
  2954. * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
  2955. * @param[in] numTaps number of coefficients in the filter.
  2956. * @param[in] M decimation factor.
  2957. * @param[in] *pCoeffs points to the filter coefficients.
  2958. * @param[in] *pState points to the state buffer.
  2959. * @param[in] blockSize number of input samples to process per call.
  2960. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  2961. * <code>blockSize</code> is not a multiple of <code>M</code>.
  2962. */
  2963. arm_status arm_fir_decimate_init_f32(
  2964. arm_fir_decimate_instance_f32 * S,
  2965. uint16_t numTaps,
  2966. uint8_t M,
  2967. float32_t * pCoeffs,
  2968. float32_t * pState,
  2969. uint32_t blockSize);
  2970. /**
  2971. * @brief Processing function for the Q15 FIR decimator.
  2972. * @param[in] *S points to an instance of the Q15 FIR decimator structure.
  2973. * @param[in] *pSrc points to the block of input data.
  2974. * @param[out] *pDst points to the block of output data
  2975. * @param[in] blockSize number of input samples to process per call.
  2976. * @return none
  2977. */
  2978. void arm_fir_decimate_q15(
  2979. const arm_fir_decimate_instance_q15 * S,
  2980. q15_t * pSrc,
  2981. q15_t * pDst,
  2982. uint32_t blockSize);
  2983. /**
  2984. * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
  2985. * @param[in] *S points to an instance of the Q15 FIR decimator structure.
  2986. * @param[in] *pSrc points to the block of input data.
  2987. * @param[out] *pDst points to the block of output data
  2988. * @param[in] blockSize number of input samples to process per call.
  2989. * @return none
  2990. */
  2991. void arm_fir_decimate_fast_q15(
  2992. const arm_fir_decimate_instance_q15 * S,
  2993. q15_t * pSrc,
  2994. q15_t * pDst,
  2995. uint32_t blockSize);
  2996. /**
  2997. * @brief Initialization function for the Q15 FIR decimator.
  2998. * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
  2999. * @param[in] numTaps number of coefficients in the filter.
  3000. * @param[in] M decimation factor.
  3001. * @param[in] *pCoeffs points to the filter coefficients.
  3002. * @param[in] *pState points to the state buffer.
  3003. * @param[in] blockSize number of input samples to process per call.
  3004. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3005. * <code>blockSize</code> is not a multiple of <code>M</code>.
  3006. */
  3007. arm_status arm_fir_decimate_init_q15(
  3008. arm_fir_decimate_instance_q15 * S,
  3009. uint16_t numTaps,
  3010. uint8_t M,
  3011. q15_t * pCoeffs,
  3012. q15_t * pState,
  3013. uint32_t blockSize);
  3014. /**
  3015. * @brief Processing function for the Q31 FIR decimator.
  3016. * @param[in] *S points to an instance of the Q31 FIR decimator structure.
  3017. * @param[in] *pSrc points to the block of input data.
  3018. * @param[out] *pDst points to the block of output data
  3019. * @param[in] blockSize number of input samples to process per call.
  3020. * @return none
  3021. */
  3022. void arm_fir_decimate_q31(
  3023. const arm_fir_decimate_instance_q31 * S,
  3024. q31_t * pSrc,
  3025. q31_t * pDst,
  3026. uint32_t blockSize);
  3027. /**
  3028. * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
  3029. * @param[in] *S points to an instance of the Q31 FIR decimator structure.
  3030. * @param[in] *pSrc points to the block of input data.
  3031. * @param[out] *pDst points to the block of output data
  3032. * @param[in] blockSize number of input samples to process per call.
  3033. * @return none
  3034. */
  3035. void arm_fir_decimate_fast_q31(
  3036. arm_fir_decimate_instance_q31 * S,
  3037. q31_t * pSrc,
  3038. q31_t * pDst,
  3039. uint32_t blockSize);
  3040. /**
  3041. * @brief Initialization function for the Q31 FIR decimator.
  3042. * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
  3043. * @param[in] numTaps number of coefficients in the filter.
  3044. * @param[in] M decimation factor.
  3045. * @param[in] *pCoeffs points to the filter coefficients.
  3046. * @param[in] *pState points to the state buffer.
  3047. * @param[in] blockSize number of input samples to process per call.
  3048. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3049. * <code>blockSize</code> is not a multiple of <code>M</code>.
  3050. */
  3051. arm_status arm_fir_decimate_init_q31(
  3052. arm_fir_decimate_instance_q31 * S,
  3053. uint16_t numTaps,
  3054. uint8_t M,
  3055. q31_t * pCoeffs,
  3056. q31_t * pState,
  3057. uint32_t blockSize);
  3058. /**
  3059. * @brief Instance structure for the Q15 FIR interpolator.
  3060. */
  3061. typedef struct
  3062. {
  3063. uint8_t L; /**< upsample factor. */
  3064. uint16_t phaseLength; /**< length of each polyphase filter component. */
  3065. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
  3066. q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
  3067. } arm_fir_interpolate_instance_q15;
  3068. /**
  3069. * @brief Instance structure for the Q31 FIR interpolator.
  3070. */
  3071. typedef struct
  3072. {
  3073. uint8_t L; /**< upsample factor. */
  3074. uint16_t phaseLength; /**< length of each polyphase filter component. */
  3075. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
  3076. q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
  3077. } arm_fir_interpolate_instance_q31;
  3078. /**
  3079. * @brief Instance structure for the floating-point FIR interpolator.
  3080. */
  3081. typedef struct
  3082. {
  3083. uint8_t L; /**< upsample factor. */
  3084. uint16_t phaseLength; /**< length of each polyphase filter component. */
  3085. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
  3086. float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
  3087. } arm_fir_interpolate_instance_f32;
  3088. /**
  3089. * @brief Processing function for the Q15 FIR interpolator.
  3090. * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
  3091. * @param[in] *pSrc points to the block of input data.
  3092. * @param[out] *pDst points to the block of output data.
  3093. * @param[in] blockSize number of input samples to process per call.
  3094. * @return none.
  3095. */
  3096. void arm_fir_interpolate_q15(
  3097. const arm_fir_interpolate_instance_q15 * S,
  3098. q15_t * pSrc,
  3099. q15_t * pDst,
  3100. uint32_t blockSize);
  3101. /**
  3102. * @brief Initialization function for the Q15 FIR interpolator.
  3103. * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
  3104. * @param[in] L upsample factor.
  3105. * @param[in] numTaps number of filter coefficients in the filter.
  3106. * @param[in] *pCoeffs points to the filter coefficient buffer.
  3107. * @param[in] *pState points to the state buffer.
  3108. * @param[in] blockSize number of input samples to process per call.
  3109. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3110. * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
  3111. */
  3112. arm_status arm_fir_interpolate_init_q15(
  3113. arm_fir_interpolate_instance_q15 * S,
  3114. uint8_t L,
  3115. uint16_t numTaps,
  3116. q15_t * pCoeffs,
  3117. q15_t * pState,
  3118. uint32_t blockSize);
  3119. /**
  3120. * @brief Processing function for the Q31 FIR interpolator.
  3121. * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
  3122. * @param[in] *pSrc points to the block of input data.
  3123. * @param[out] *pDst points to the block of output data.
  3124. * @param[in] blockSize number of input samples to process per call.
  3125. * @return none.
  3126. */
  3127. void arm_fir_interpolate_q31(
  3128. const arm_fir_interpolate_instance_q31 * S,
  3129. q31_t * pSrc,
  3130. q31_t * pDst,
  3131. uint32_t blockSize);
  3132. /**
  3133. * @brief Initialization function for the Q31 FIR interpolator.
  3134. * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
  3135. * @param[in] L upsample factor.
  3136. * @param[in] numTaps number of filter coefficients in the filter.
  3137. * @param[in] *pCoeffs points to the filter coefficient buffer.
  3138. * @param[in] *pState points to the state buffer.
  3139. * @param[in] blockSize number of input samples to process per call.
  3140. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3141. * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
  3142. */
  3143. arm_status arm_fir_interpolate_init_q31(
  3144. arm_fir_interpolate_instance_q31 * S,
  3145. uint8_t L,
  3146. uint16_t numTaps,
  3147. q31_t * pCoeffs,
  3148. q31_t * pState,
  3149. uint32_t blockSize);
  3150. /**
  3151. * @brief Processing function for the floating-point FIR interpolator.
  3152. * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
  3153. * @param[in] *pSrc points to the block of input data.
  3154. * @param[out] *pDst points to the block of output data.
  3155. * @param[in] blockSize number of input samples to process per call.
  3156. * @return none.
  3157. */
  3158. void arm_fir_interpolate_f32(
  3159. const arm_fir_interpolate_instance_f32 * S,
  3160. float32_t * pSrc,
  3161. float32_t * pDst,
  3162. uint32_t blockSize);
  3163. /**
  3164. * @brief Initialization function for the floating-point FIR interpolator.
  3165. * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
  3166. * @param[in] L upsample factor.
  3167. * @param[in] numTaps number of filter coefficients in the filter.
  3168. * @param[in] *pCoeffs points to the filter coefficient buffer.
  3169. * @param[in] *pState points to the state buffer.
  3170. * @param[in] blockSize number of input samples to process per call.
  3171. * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
  3172. * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
  3173. */
  3174. arm_status arm_fir_interpolate_init_f32(
  3175. arm_fir_interpolate_instance_f32 * S,
  3176. uint8_t L,
  3177. uint16_t numTaps,
  3178. float32_t * pCoeffs,
  3179. float32_t * pState,
  3180. uint32_t blockSize);
  3181. /**
  3182. * @brief Instance structure for the high precision Q31 Biquad cascade filter.
  3183. */
  3184. typedef struct
  3185. {
  3186. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3187. q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
  3188. q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3189. uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
  3190. } arm_biquad_cas_df1_32x64_ins_q31;
  3191. /**
  3192. * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
  3193. * @param[in] *pSrc points to the block of input data.
  3194. * @param[out] *pDst points to the block of output data
  3195. * @param[in] blockSize number of samples to process.
  3196. * @return none.
  3197. */
  3198. void arm_biquad_cas_df1_32x64_q31(
  3199. const arm_biquad_cas_df1_32x64_ins_q31 * S,
  3200. q31_t * pSrc,
  3201. q31_t * pDst,
  3202. uint32_t blockSize);
  3203. /**
  3204. * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
  3205. * @param[in] numStages number of 2nd order stages in the filter.
  3206. * @param[in] *pCoeffs points to the filter coefficients.
  3207. * @param[in] *pState points to the state buffer.
  3208. * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
  3209. * @return none
  3210. */
  3211. void arm_biquad_cas_df1_32x64_init_q31(
  3212. arm_biquad_cas_df1_32x64_ins_q31 * S,
  3213. uint8_t numStages,
  3214. q31_t * pCoeffs,
  3215. q63_t * pState,
  3216. uint8_t postShift);
  3217. /**
  3218. * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
  3219. */
  3220. typedef struct
  3221. {
  3222. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3223. float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
  3224. float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3225. } arm_biquad_cascade_df2T_instance_f32;
  3226. /**
  3227. * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
  3228. */
  3229. typedef struct
  3230. {
  3231. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3232. float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
  3233. float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3234. } arm_biquad_cascade_stereo_df2T_instance_f32;
  3235. /**
  3236. * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
  3237. */
  3238. typedef struct
  3239. {
  3240. uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
  3241. float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
  3242. float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
  3243. } arm_biquad_cascade_df2T_instance_f64;
  3244. /**
  3245. * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
  3246. * @param[in] *S points to an instance of the filter data structure.
  3247. * @param[in] *pSrc points to the block of input data.
  3248. * @param[out] *pDst points to the block of output data
  3249. * @param[in] blockSize number of samples to process.
  3250. * @return none.
  3251. */
  3252. void arm_biquad_cascade_df2T_f32(
  3253. const arm_biquad_cascade_df2T_instance_f32 * S,
  3254. float32_t * pSrc,
  3255. float32_t * pDst,
  3256. uint32_t blockSize);
  3257. /**
  3258. * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
  3259. * @param[in] *S points to an instance of the filter data structure.
  3260. * @param[in] *pSrc points to the block of input data.
  3261. * @param[out] *pDst points to the block of output data
  3262. * @param[in] blockSize number of samples to process.
  3263. * @return none.
  3264. */
  3265. void arm_biquad_cascade_stereo_df2T_f32(
  3266. const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
  3267. float32_t * pSrc,
  3268. float32_t * pDst,
  3269. uint32_t blockSize);
  3270. /**
  3271. * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
  3272. * @param[in] *S points to an instance of the filter data structure.
  3273. * @param[in] *pSrc points to the block of input data.
  3274. * @param[out] *pDst points to the block of output data
  3275. * @param[in] blockSize number of samples to process.
  3276. * @return none.
  3277. */
  3278. void arm_biquad_cascade_df2T_f64(
  3279. const arm_biquad_cascade_df2T_instance_f64 * S,
  3280. float64_t * pSrc,
  3281. float64_t * pDst,
  3282. uint32_t blockSize);
  3283. /**
  3284. * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
  3285. * @param[in,out] *S points to an instance of the filter data structure.
  3286. * @param[in] numStages number of 2nd order stages in the filter.
  3287. * @param[in] *pCoeffs points to the filter coefficients.
  3288. * @param[in] *pState points to the state buffer.
  3289. * @return none
  3290. */
  3291. void arm_biquad_cascade_df2T_init_f32(
  3292. arm_biquad_cascade_df2T_instance_f32 * S,
  3293. uint8_t numStages,
  3294. float32_t * pCoeffs,
  3295. float32_t * pState);
  3296. /**
  3297. * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
  3298. * @param[in,out] *S points to an instance of the filter data structure.
  3299. * @param[in] numStages number of 2nd order stages in the filter.
  3300. * @param[in] *pCoeffs points to the filter coefficients.
  3301. * @param[in] *pState points to the state buffer.
  3302. * @return none
  3303. */
  3304. void arm_biquad_cascade_stereo_df2T_init_f32(
  3305. arm_biquad_cascade_stereo_df2T_instance_f32 * S,
  3306. uint8_t numStages,
  3307. float32_t * pCoeffs,
  3308. float32_t * pState);
  3309. /**
  3310. * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
  3311. * @param[in,out] *S points to an instance of the filter data structure.
  3312. * @param[in] numStages number of 2nd order stages in the filter.
  3313. * @param[in] *pCoeffs points to the filter coefficients.
  3314. * @param[in] *pState points to the state buffer.
  3315. * @return none
  3316. */
  3317. void arm_biquad_cascade_df2T_init_f64(
  3318. arm_biquad_cascade_df2T_instance_f64 * S,
  3319. uint8_t numStages,
  3320. float64_t * pCoeffs,
  3321. float64_t * pState);
  3322. /**
  3323. * @brief Instance structure for the Q15 FIR lattice filter.
  3324. */
  3325. typedef struct
  3326. {
  3327. uint16_t numStages; /**< number of filter stages. */
  3328. q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
  3329. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
  3330. } arm_fir_lattice_instance_q15;
  3331. /**
  3332. * @brief Instance structure for the Q31 FIR lattice filter.
  3333. */
  3334. typedef struct
  3335. {
  3336. uint16_t numStages; /**< number of filter stages. */
  3337. q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
  3338. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
  3339. } arm_fir_lattice_instance_q31;
  3340. /**
  3341. * @brief Instance structure for the floating-point FIR lattice filter.
  3342. */
  3343. typedef struct
  3344. {
  3345. uint16_t numStages; /**< number of filter stages. */
  3346. float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
  3347. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
  3348. } arm_fir_lattice_instance_f32;
  3349. /**
  3350. * @brief Initialization function for the Q15 FIR lattice filter.
  3351. * @param[in] *S points to an instance of the Q15 FIR lattice structure.
  3352. * @param[in] numStages number of filter stages.
  3353. * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
  3354. * @param[in] *pState points to the state buffer. The array is of length numStages.
  3355. * @return none.
  3356. */
  3357. void arm_fir_lattice_init_q15(
  3358. arm_fir_lattice_instance_q15 * S,
  3359. uint16_t numStages,
  3360. q15_t * pCoeffs,
  3361. q15_t * pState);
  3362. /**
  3363. * @brief Processing function for the Q15 FIR lattice filter.
  3364. * @param[in] *S points to an instance of the Q15 FIR lattice structure.
  3365. * @param[in] *pSrc points to the block of input data.
  3366. * @param[out] *pDst points to the block of output data.
  3367. * @param[in] blockSize number of samples to process.
  3368. * @return none.
  3369. */
  3370. void arm_fir_lattice_q15(
  3371. const arm_fir_lattice_instance_q15 * S,
  3372. q15_t * pSrc,
  3373. q15_t * pDst,
  3374. uint32_t blockSize);
  3375. /**
  3376. * @brief Initialization function for the Q31 FIR lattice filter.
  3377. * @param[in] *S points to an instance of the Q31 FIR lattice structure.
  3378. * @param[in] numStages number of filter stages.
  3379. * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
  3380. * @param[in] *pState points to the state buffer. The array is of length numStages.
  3381. * @return none.
  3382. */
  3383. void arm_fir_lattice_init_q31(
  3384. arm_fir_lattice_instance_q31 * S,
  3385. uint16_t numStages,
  3386. q31_t * pCoeffs,
  3387. q31_t * pState);
  3388. /**
  3389. * @brief Processing function for the Q31 FIR lattice filter.
  3390. * @param[in] *S points to an instance of the Q31 FIR lattice structure.
  3391. * @param[in] *pSrc points to the block of input data.
  3392. * @param[out] *pDst points to the block of output data
  3393. * @param[in] blockSize number of samples to process.
  3394. * @return none.
  3395. */
  3396. void arm_fir_lattice_q31(
  3397. const arm_fir_lattice_instance_q31 * S,
  3398. q31_t * pSrc,
  3399. q31_t * pDst,
  3400. uint32_t blockSize);
  3401. /**
  3402. * @brief Initialization function for the floating-point FIR lattice filter.
  3403. * @param[in] *S points to an instance of the floating-point FIR lattice structure.
  3404. * @param[in] numStages number of filter stages.
  3405. * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
  3406. * @param[in] *pState points to the state buffer. The array is of length numStages.
  3407. * @return none.
  3408. */
  3409. void arm_fir_lattice_init_f32(
  3410. arm_fir_lattice_instance_f32 * S,
  3411. uint16_t numStages,
  3412. float32_t * pCoeffs,
  3413. float32_t * pState);
  3414. /**
  3415. * @brief Processing function for the floating-point FIR lattice filter.
  3416. * @param[in] *S points to an instance of the floating-point FIR lattice structure.
  3417. * @param[in] *pSrc points to the block of input data.
  3418. * @param[out] *pDst points to the block of output data
  3419. * @param[in] blockSize number of samples to process.
  3420. * @return none.
  3421. */
  3422. void arm_fir_lattice_f32(
  3423. const arm_fir_lattice_instance_f32 * S,
  3424. float32_t * pSrc,
  3425. float32_t * pDst,
  3426. uint32_t blockSize);
  3427. /**
  3428. * @brief Instance structure for the Q15 IIR lattice filter.
  3429. */
  3430. typedef struct
  3431. {
  3432. uint16_t numStages; /**< number of stages in the filter. */
  3433. q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
  3434. q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
  3435. q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
  3436. } arm_iir_lattice_instance_q15;
  3437. /**
  3438. * @brief Instance structure for the Q31 IIR lattice filter.
  3439. */
  3440. typedef struct
  3441. {
  3442. uint16_t numStages; /**< number of stages in the filter. */
  3443. q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
  3444. q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
  3445. q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
  3446. } arm_iir_lattice_instance_q31;
  3447. /**
  3448. * @brief Instance structure for the floating-point IIR lattice filter.
  3449. */
  3450. typedef struct
  3451. {
  3452. uint16_t numStages; /**< number of stages in the filter. */
  3453. float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
  3454. float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
  3455. float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
  3456. } arm_iir_lattice_instance_f32;
  3457. /**
  3458. * @brief Processing function for the floating-point IIR lattice filter.
  3459. * @param[in] *S points to an instance of the floating-point IIR lattice structure.
  3460. * @param[in] *pSrc points to the block of input data.
  3461. * @param[out] *pDst points to the block of output data.
  3462. * @param[in] blockSize number of samples to process.
  3463. * @return none.
  3464. */
  3465. void arm_iir_lattice_f32(
  3466. const arm_iir_lattice_instance_f32 * S,
  3467. float32_t * pSrc,
  3468. float32_t * pDst,
  3469. uint32_t blockSize);
  3470. /**
  3471. * @brief Initialization function for the floating-point IIR lattice filter.
  3472. * @param[in] *S points to an instance of the floating-point IIR lattice structure.
  3473. * @param[in] numStages number of stages in the filter.
  3474. * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
  3475. * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
  3476. * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
  3477. * @param[in] blockSize number of samples to process.
  3478. * @return none.
  3479. */
  3480. void arm_iir_lattice_init_f32(
  3481. arm_iir_lattice_instance_f32 * S,
  3482. uint16_t numStages,
  3483. float32_t * pkCoeffs,
  3484. float32_t * pvCoeffs,
  3485. float32_t * pState,
  3486. uint32_t blockSize);
  3487. /**
  3488. * @brief Processing function for the Q31 IIR lattice filter.
  3489. * @param[in] *S points to an instance of the Q31 IIR lattice structure.
  3490. * @param[in] *pSrc points to the block of input data.
  3491. * @param[out] *pDst points to the block of output data.
  3492. * @param[in] blockSize number of samples to process.
  3493. * @return none.
  3494. */
  3495. void arm_iir_lattice_q31(
  3496. const arm_iir_lattice_instance_q31 * S,
  3497. q31_t * pSrc,
  3498. q31_t * pDst,
  3499. uint32_t blockSize);
  3500. /**
  3501. * @brief Initialization function for the Q31 IIR lattice filter.
  3502. * @param[in] *S points to an instance of the Q31 IIR lattice structure.
  3503. * @param[in] numStages number of stages in the filter.
  3504. * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
  3505. * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
  3506. * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
  3507. * @param[in] blockSize number of samples to process.
  3508. * @return none.
  3509. */
  3510. void arm_iir_lattice_init_q31(
  3511. arm_iir_lattice_instance_q31 * S,
  3512. uint16_t numStages,
  3513. q31_t * pkCoeffs,
  3514. q31_t * pvCoeffs,
  3515. q31_t * pState,
  3516. uint32_t blockSize);
  3517. /**
  3518. * @brief Processing function for the Q15 IIR lattice filter.
  3519. * @param[in] *S points to an instance of the Q15 IIR lattice structure.
  3520. * @param[in] *pSrc points to the block of input data.
  3521. * @param[out] *pDst points to the block of output data.
  3522. * @param[in] blockSize number of samples to process.
  3523. * @return none.
  3524. */
  3525. void arm_iir_lattice_q15(
  3526. const arm_iir_lattice_instance_q15 * S,
  3527. q15_t * pSrc,
  3528. q15_t * pDst,
  3529. uint32_t blockSize);
  3530. /**
  3531. * @brief Initialization function for the Q15 IIR lattice filter.
  3532. * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
  3533. * @param[in] numStages number of stages in the filter.
  3534. * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
  3535. * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
  3536. * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
  3537. * @param[in] blockSize number of samples to process per call.
  3538. * @return none.
  3539. */
  3540. void arm_iir_lattice_init_q15(
  3541. arm_iir_lattice_instance_q15 * S,
  3542. uint16_t numStages,
  3543. q15_t * pkCoeffs,
  3544. q15_t * pvCoeffs,
  3545. q15_t * pState,
  3546. uint32_t blockSize);
  3547. /**
  3548. * @brief Instance structure for the floating-point LMS filter.
  3549. */
  3550. typedef struct
  3551. {
  3552. uint16_t numTaps; /**< number of coefficients in the filter. */
  3553. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3554. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3555. float32_t mu; /**< step size that controls filter coefficient updates. */
  3556. } arm_lms_instance_f32;
  3557. /**
  3558. * @brief Processing function for floating-point LMS filter.
  3559. * @param[in] *S points to an instance of the floating-point LMS filter structure.
  3560. * @param[in] *pSrc points to the block of input data.
  3561. * @param[in] *pRef points to the block of reference data.
  3562. * @param[out] *pOut points to the block of output data.
  3563. * @param[out] *pErr points to the block of error data.
  3564. * @param[in] blockSize number of samples to process.
  3565. * @return none.
  3566. */
  3567. void arm_lms_f32(
  3568. const arm_lms_instance_f32 * S,
  3569. float32_t * pSrc,
  3570. float32_t * pRef,
  3571. float32_t * pOut,
  3572. float32_t * pErr,
  3573. uint32_t blockSize);
  3574. /**
  3575. * @brief Initialization function for floating-point LMS filter.
  3576. * @param[in] *S points to an instance of the floating-point LMS filter structure.
  3577. * @param[in] numTaps number of filter coefficients.
  3578. * @param[in] *pCoeffs points to the coefficient buffer.
  3579. * @param[in] *pState points to state buffer.
  3580. * @param[in] mu step size that controls filter coefficient updates.
  3581. * @param[in] blockSize number of samples to process.
  3582. * @return none.
  3583. */
  3584. void arm_lms_init_f32(
  3585. arm_lms_instance_f32 * S,
  3586. uint16_t numTaps,
  3587. float32_t * pCoeffs,
  3588. float32_t * pState,
  3589. float32_t mu,
  3590. uint32_t blockSize);
  3591. /**
  3592. * @brief Instance structure for the Q15 LMS filter.
  3593. */
  3594. typedef struct
  3595. {
  3596. uint16_t numTaps; /**< number of coefficients in the filter. */
  3597. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3598. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3599. q15_t mu; /**< step size that controls filter coefficient updates. */
  3600. uint32_t postShift; /**< bit shift applied to coefficients. */
  3601. } arm_lms_instance_q15;
  3602. /**
  3603. * @brief Initialization function for the Q15 LMS filter.
  3604. * @param[in] *S points to an instance of the Q15 LMS filter structure.
  3605. * @param[in] numTaps number of filter coefficients.
  3606. * @param[in] *pCoeffs points to the coefficient buffer.
  3607. * @param[in] *pState points to the state buffer.
  3608. * @param[in] mu step size that controls filter coefficient updates.
  3609. * @param[in] blockSize number of samples to process.
  3610. * @param[in] postShift bit shift applied to coefficients.
  3611. * @return none.
  3612. */
  3613. void arm_lms_init_q15(
  3614. arm_lms_instance_q15 * S,
  3615. uint16_t numTaps,
  3616. q15_t * pCoeffs,
  3617. q15_t * pState,
  3618. q15_t mu,
  3619. uint32_t blockSize,
  3620. uint32_t postShift);
  3621. /**
  3622. * @brief Processing function for Q15 LMS filter.
  3623. * @param[in] *S points to an instance of the Q15 LMS filter structure.
  3624. * @param[in] *pSrc points to the block of input data.
  3625. * @param[in] *pRef points to the block of reference data.
  3626. * @param[out] *pOut points to the block of output data.
  3627. * @param[out] *pErr points to the block of error data.
  3628. * @param[in] blockSize number of samples to process.
  3629. * @return none.
  3630. */
  3631. void arm_lms_q15(
  3632. const arm_lms_instance_q15 * S,
  3633. q15_t * pSrc,
  3634. q15_t * pRef,
  3635. q15_t * pOut,
  3636. q15_t * pErr,
  3637. uint32_t blockSize);
  3638. /**
  3639. * @brief Instance structure for the Q31 LMS filter.
  3640. */
  3641. typedef struct
  3642. {
  3643. uint16_t numTaps; /**< number of coefficients in the filter. */
  3644. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3645. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3646. q31_t mu; /**< step size that controls filter coefficient updates. */
  3647. uint32_t postShift; /**< bit shift applied to coefficients. */
  3648. } arm_lms_instance_q31;
  3649. /**
  3650. * @brief Processing function for Q31 LMS filter.
  3651. * @param[in] *S points to an instance of the Q15 LMS filter structure.
  3652. * @param[in] *pSrc points to the block of input data.
  3653. * @param[in] *pRef points to the block of reference data.
  3654. * @param[out] *pOut points to the block of output data.
  3655. * @param[out] *pErr points to the block of error data.
  3656. * @param[in] blockSize number of samples to process.
  3657. * @return none.
  3658. */
  3659. void arm_lms_q31(
  3660. const arm_lms_instance_q31 * S,
  3661. q31_t * pSrc,
  3662. q31_t * pRef,
  3663. q31_t * pOut,
  3664. q31_t * pErr,
  3665. uint32_t blockSize);
  3666. /**
  3667. * @brief Initialization function for Q31 LMS filter.
  3668. * @param[in] *S points to an instance of the Q31 LMS filter structure.
  3669. * @param[in] numTaps number of filter coefficients.
  3670. * @param[in] *pCoeffs points to coefficient buffer.
  3671. * @param[in] *pState points to state buffer.
  3672. * @param[in] mu step size that controls filter coefficient updates.
  3673. * @param[in] blockSize number of samples to process.
  3674. * @param[in] postShift bit shift applied to coefficients.
  3675. * @return none.
  3676. */
  3677. void arm_lms_init_q31(
  3678. arm_lms_instance_q31 * S,
  3679. uint16_t numTaps,
  3680. q31_t * pCoeffs,
  3681. q31_t * pState,
  3682. q31_t mu,
  3683. uint32_t blockSize,
  3684. uint32_t postShift);
  3685. /**
  3686. * @brief Instance structure for the floating-point normalized LMS filter.
  3687. */
  3688. typedef struct
  3689. {
  3690. uint16_t numTaps; /**< number of coefficients in the filter. */
  3691. float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3692. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3693. float32_t mu; /**< step size that control filter coefficient updates. */
  3694. float32_t energy; /**< saves previous frame energy. */
  3695. float32_t x0; /**< saves previous input sample. */
  3696. } arm_lms_norm_instance_f32;
  3697. /**
  3698. * @brief Processing function for floating-point normalized LMS filter.
  3699. * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
  3700. * @param[in] *pSrc points to the block of input data.
  3701. * @param[in] *pRef points to the block of reference data.
  3702. * @param[out] *pOut points to the block of output data.
  3703. * @param[out] *pErr points to the block of error data.
  3704. * @param[in] blockSize number of samples to process.
  3705. * @return none.
  3706. */
  3707. void arm_lms_norm_f32(
  3708. arm_lms_norm_instance_f32 * S,
  3709. float32_t * pSrc,
  3710. float32_t * pRef,
  3711. float32_t * pOut,
  3712. float32_t * pErr,
  3713. uint32_t blockSize);
  3714. /**
  3715. * @brief Initialization function for floating-point normalized LMS filter.
  3716. * @param[in] *S points to an instance of the floating-point LMS filter structure.
  3717. * @param[in] numTaps number of filter coefficients.
  3718. * @param[in] *pCoeffs points to coefficient buffer.
  3719. * @param[in] *pState points to state buffer.
  3720. * @param[in] mu step size that controls filter coefficient updates.
  3721. * @param[in] blockSize number of samples to process.
  3722. * @return none.
  3723. */
  3724. void arm_lms_norm_init_f32(
  3725. arm_lms_norm_instance_f32 * S,
  3726. uint16_t numTaps,
  3727. float32_t * pCoeffs,
  3728. float32_t * pState,
  3729. float32_t mu,
  3730. uint32_t blockSize);
  3731. /**
  3732. * @brief Instance structure for the Q31 normalized LMS filter.
  3733. */
  3734. typedef struct
  3735. {
  3736. uint16_t numTaps; /**< number of coefficients in the filter. */
  3737. q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3738. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3739. q31_t mu; /**< step size that controls filter coefficient updates. */
  3740. uint8_t postShift; /**< bit shift applied to coefficients. */
  3741. q31_t *recipTable; /**< points to the reciprocal initial value table. */
  3742. q31_t energy; /**< saves previous frame energy. */
  3743. q31_t x0; /**< saves previous input sample. */
  3744. } arm_lms_norm_instance_q31;
  3745. /**
  3746. * @brief Processing function for Q31 normalized LMS filter.
  3747. * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
  3748. * @param[in] *pSrc points to the block of input data.
  3749. * @param[in] *pRef points to the block of reference data.
  3750. * @param[out] *pOut points to the block of output data.
  3751. * @param[out] *pErr points to the block of error data.
  3752. * @param[in] blockSize number of samples to process.
  3753. * @return none.
  3754. */
  3755. void arm_lms_norm_q31(
  3756. arm_lms_norm_instance_q31 * S,
  3757. q31_t * pSrc,
  3758. q31_t * pRef,
  3759. q31_t * pOut,
  3760. q31_t * pErr,
  3761. uint32_t blockSize);
  3762. /**
  3763. * @brief Initialization function for Q31 normalized LMS filter.
  3764. * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
  3765. * @param[in] numTaps number of filter coefficients.
  3766. * @param[in] *pCoeffs points to coefficient buffer.
  3767. * @param[in] *pState points to state buffer.
  3768. * @param[in] mu step size that controls filter coefficient updates.
  3769. * @param[in] blockSize number of samples to process.
  3770. * @param[in] postShift bit shift applied to coefficients.
  3771. * @return none.
  3772. */
  3773. void arm_lms_norm_init_q31(
  3774. arm_lms_norm_instance_q31 * S,
  3775. uint16_t numTaps,
  3776. q31_t * pCoeffs,
  3777. q31_t * pState,
  3778. q31_t mu,
  3779. uint32_t blockSize,
  3780. uint8_t postShift);
  3781. /**
  3782. * @brief Instance structure for the Q15 normalized LMS filter.
  3783. */
  3784. typedef struct
  3785. {
  3786. uint16_t numTaps; /**< Number of coefficients in the filter. */
  3787. q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
  3788. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
  3789. q15_t mu; /**< step size that controls filter coefficient updates. */
  3790. uint8_t postShift; /**< bit shift applied to coefficients. */
  3791. q15_t *recipTable; /**< Points to the reciprocal initial value table. */
  3792. q15_t energy; /**< saves previous frame energy. */
  3793. q15_t x0; /**< saves previous input sample. */
  3794. } arm_lms_norm_instance_q15;
  3795. /**
  3796. * @brief Processing function for Q15 normalized LMS filter.
  3797. * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
  3798. * @param[in] *pSrc points to the block of input data.
  3799. * @param[in] *pRef points to the block of reference data.
  3800. * @param[out] *pOut points to the block of output data.
  3801. * @param[out] *pErr points to the block of error data.
  3802. * @param[in] blockSize number of samples to process.
  3803. * @return none.
  3804. */
  3805. void arm_lms_norm_q15(
  3806. arm_lms_norm_instance_q15 * S,
  3807. q15_t * pSrc,
  3808. q15_t * pRef,
  3809. q15_t * pOut,
  3810. q15_t * pErr,
  3811. uint32_t blockSize);
  3812. /**
  3813. * @brief Initialization function for Q15 normalized LMS filter.
  3814. * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
  3815. * @param[in] numTaps number of filter coefficients.
  3816. * @param[in] *pCoeffs points to coefficient buffer.
  3817. * @param[in] *pState points to state buffer.
  3818. * @param[in] mu step size that controls filter coefficient updates.
  3819. * @param[in] blockSize number of samples to process.
  3820. * @param[in] postShift bit shift applied to coefficients.
  3821. * @return none.
  3822. */
  3823. void arm_lms_norm_init_q15(
  3824. arm_lms_norm_instance_q15 * S,
  3825. uint16_t numTaps,
  3826. q15_t * pCoeffs,
  3827. q15_t * pState,
  3828. q15_t mu,
  3829. uint32_t blockSize,
  3830. uint8_t postShift);
  3831. /**
  3832. * @brief Correlation of floating-point sequences.
  3833. * @param[in] *pSrcA points to the first input sequence.
  3834. * @param[in] srcALen length of the first input sequence.
  3835. * @param[in] *pSrcB points to the second input sequence.
  3836. * @param[in] srcBLen length of the second input sequence.
  3837. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3838. * @return none.
  3839. */
  3840. void arm_correlate_f32(
  3841. float32_t * pSrcA,
  3842. uint32_t srcALen,
  3843. float32_t * pSrcB,
  3844. uint32_t srcBLen,
  3845. float32_t * pDst);
  3846. /**
  3847. * @brief Correlation of Q15 sequences
  3848. * @param[in] *pSrcA points to the first input sequence.
  3849. * @param[in] srcALen length of the first input sequence.
  3850. * @param[in] *pSrcB points to the second input sequence.
  3851. * @param[in] srcBLen length of the second input sequence.
  3852. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3853. * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  3854. * @return none.
  3855. */
  3856. void arm_correlate_opt_q15(
  3857. q15_t * pSrcA,
  3858. uint32_t srcALen,
  3859. q15_t * pSrcB,
  3860. uint32_t srcBLen,
  3861. q15_t * pDst,
  3862. q15_t * pScratch);
  3863. /**
  3864. * @brief Correlation of Q15 sequences.
  3865. * @param[in] *pSrcA points to the first input sequence.
  3866. * @param[in] srcALen length of the first input sequence.
  3867. * @param[in] *pSrcB points to the second input sequence.
  3868. * @param[in] srcBLen length of the second input sequence.
  3869. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3870. * @return none.
  3871. */
  3872. void arm_correlate_q15(
  3873. q15_t * pSrcA,
  3874. uint32_t srcALen,
  3875. q15_t * pSrcB,
  3876. uint32_t srcBLen,
  3877. q15_t * pDst);
  3878. /**
  3879. * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
  3880. * @param[in] *pSrcA points to the first input sequence.
  3881. * @param[in] srcALen length of the first input sequence.
  3882. * @param[in] *pSrcB points to the second input sequence.
  3883. * @param[in] srcBLen length of the second input sequence.
  3884. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3885. * @return none.
  3886. */
  3887. void arm_correlate_fast_q15(
  3888. q15_t * pSrcA,
  3889. uint32_t srcALen,
  3890. q15_t * pSrcB,
  3891. uint32_t srcBLen,
  3892. q15_t * pDst);
  3893. /**
  3894. * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
  3895. * @param[in] *pSrcA points to the first input sequence.
  3896. * @param[in] srcALen length of the first input sequence.
  3897. * @param[in] *pSrcB points to the second input sequence.
  3898. * @param[in] srcBLen length of the second input sequence.
  3899. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3900. * @param[in] *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  3901. * @return none.
  3902. */
  3903. void arm_correlate_fast_opt_q15(
  3904. q15_t * pSrcA,
  3905. uint32_t srcALen,
  3906. q15_t * pSrcB,
  3907. uint32_t srcBLen,
  3908. q15_t * pDst,
  3909. q15_t * pScratch);
  3910. /**
  3911. * @brief Correlation of Q31 sequences.
  3912. * @param[in] *pSrcA points to the first input sequence.
  3913. * @param[in] srcALen length of the first input sequence.
  3914. * @param[in] *pSrcB points to the second input sequence.
  3915. * @param[in] srcBLen length of the second input sequence.
  3916. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3917. * @return none.
  3918. */
  3919. void arm_correlate_q31(
  3920. q31_t * pSrcA,
  3921. uint32_t srcALen,
  3922. q31_t * pSrcB,
  3923. uint32_t srcBLen,
  3924. q31_t * pDst);
  3925. /**
  3926. * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
  3927. * @param[in] *pSrcA points to the first input sequence.
  3928. * @param[in] srcALen length of the first input sequence.
  3929. * @param[in] *pSrcB points to the second input sequence.
  3930. * @param[in] srcBLen length of the second input sequence.
  3931. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3932. * @return none.
  3933. */
  3934. void arm_correlate_fast_q31(
  3935. q31_t * pSrcA,
  3936. uint32_t srcALen,
  3937. q31_t * pSrcB,
  3938. uint32_t srcBLen,
  3939. q31_t * pDst);
  3940. /**
  3941. * @brief Correlation of Q7 sequences.
  3942. * @param[in] *pSrcA points to the first input sequence.
  3943. * @param[in] srcALen length of the first input sequence.
  3944. * @param[in] *pSrcB points to the second input sequence.
  3945. * @param[in] srcBLen length of the second input sequence.
  3946. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3947. * @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
  3948. * @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
  3949. * @return none.
  3950. */
  3951. void arm_correlate_opt_q7(
  3952. q7_t * pSrcA,
  3953. uint32_t srcALen,
  3954. q7_t * pSrcB,
  3955. uint32_t srcBLen,
  3956. q7_t * pDst,
  3957. q15_t * pScratch1,
  3958. q15_t * pScratch2);
  3959. /**
  3960. * @brief Correlation of Q7 sequences.
  3961. * @param[in] *pSrcA points to the first input sequence.
  3962. * @param[in] srcALen length of the first input sequence.
  3963. * @param[in] *pSrcB points to the second input sequence.
  3964. * @param[in] srcBLen length of the second input sequence.
  3965. * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
  3966. * @return none.
  3967. */
  3968. void arm_correlate_q7(
  3969. q7_t * pSrcA,
  3970. uint32_t srcALen,
  3971. q7_t * pSrcB,
  3972. uint32_t srcBLen,
  3973. q7_t * pDst);
  3974. /**
  3975. * @brief Instance structure for the floating-point sparse FIR filter.
  3976. */
  3977. typedef struct
  3978. {
  3979. uint16_t numTaps; /**< number of coefficients in the filter. */
  3980. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  3981. float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  3982. float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  3983. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  3984. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  3985. } arm_fir_sparse_instance_f32;
  3986. /**
  3987. * @brief Instance structure for the Q31 sparse FIR filter.
  3988. */
  3989. typedef struct
  3990. {
  3991. uint16_t numTaps; /**< number of coefficients in the filter. */
  3992. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  3993. q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  3994. q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  3995. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  3996. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  3997. } arm_fir_sparse_instance_q31;
  3998. /**
  3999. * @brief Instance structure for the Q15 sparse FIR filter.
  4000. */
  4001. typedef struct
  4002. {
  4003. uint16_t numTaps; /**< number of coefficients in the filter. */
  4004. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  4005. q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  4006. q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  4007. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  4008. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  4009. } arm_fir_sparse_instance_q15;
  4010. /**
  4011. * @brief Instance structure for the Q7 sparse FIR filter.
  4012. */
  4013. typedef struct
  4014. {
  4015. uint16_t numTaps; /**< number of coefficients in the filter. */
  4016. uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
  4017. q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
  4018. q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
  4019. uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
  4020. int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
  4021. } arm_fir_sparse_instance_q7;
  4022. /**
  4023. * @brief Processing function for the floating-point sparse FIR filter.
  4024. * @param[in] *S points to an instance of the floating-point sparse FIR structure.
  4025. * @param[in] *pSrc points to the block of input data.
  4026. * @param[out] *pDst points to the block of output data
  4027. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4028. * @param[in] blockSize number of input samples to process per call.
  4029. * @return none.
  4030. */
  4031. void arm_fir_sparse_f32(
  4032. arm_fir_sparse_instance_f32 * S,
  4033. float32_t * pSrc,
  4034. float32_t * pDst,
  4035. float32_t * pScratchIn,
  4036. uint32_t blockSize);
  4037. /**
  4038. * @brief Initialization function for the floating-point sparse FIR filter.
  4039. * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
  4040. * @param[in] numTaps number of nonzero coefficients in the filter.
  4041. * @param[in] *pCoeffs points to the array of filter coefficients.
  4042. * @param[in] *pState points to the state buffer.
  4043. * @param[in] *pTapDelay points to the array of offset times.
  4044. * @param[in] maxDelay maximum offset time supported.
  4045. * @param[in] blockSize number of samples that will be processed per block.
  4046. * @return none
  4047. */
  4048. void arm_fir_sparse_init_f32(
  4049. arm_fir_sparse_instance_f32 * S,
  4050. uint16_t numTaps,
  4051. float32_t * pCoeffs,
  4052. float32_t * pState,
  4053. int32_t * pTapDelay,
  4054. uint16_t maxDelay,
  4055. uint32_t blockSize);
  4056. /**
  4057. * @brief Processing function for the Q31 sparse FIR filter.
  4058. * @param[in] *S points to an instance of the Q31 sparse FIR structure.
  4059. * @param[in] *pSrc points to the block of input data.
  4060. * @param[out] *pDst points to the block of output data
  4061. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4062. * @param[in] blockSize number of input samples to process per call.
  4063. * @return none.
  4064. */
  4065. void arm_fir_sparse_q31(
  4066. arm_fir_sparse_instance_q31 * S,
  4067. q31_t * pSrc,
  4068. q31_t * pDst,
  4069. q31_t * pScratchIn,
  4070. uint32_t blockSize);
  4071. /**
  4072. * @brief Initialization function for the Q31 sparse FIR filter.
  4073. * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
  4074. * @param[in] numTaps number of nonzero coefficients in the filter.
  4075. * @param[in] *pCoeffs points to the array of filter coefficients.
  4076. * @param[in] *pState points to the state buffer.
  4077. * @param[in] *pTapDelay points to the array of offset times.
  4078. * @param[in] maxDelay maximum offset time supported.
  4079. * @param[in] blockSize number of samples that will be processed per block.
  4080. * @return none
  4081. */
  4082. void arm_fir_sparse_init_q31(
  4083. arm_fir_sparse_instance_q31 * S,
  4084. uint16_t numTaps,
  4085. q31_t * pCoeffs,
  4086. q31_t * pState,
  4087. int32_t * pTapDelay,
  4088. uint16_t maxDelay,
  4089. uint32_t blockSize);
  4090. /**
  4091. * @brief Processing function for the Q15 sparse FIR filter.
  4092. * @param[in] *S points to an instance of the Q15 sparse FIR structure.
  4093. * @param[in] *pSrc points to the block of input data.
  4094. * @param[out] *pDst points to the block of output data
  4095. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4096. * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
  4097. * @param[in] blockSize number of input samples to process per call.
  4098. * @return none.
  4099. */
  4100. void arm_fir_sparse_q15(
  4101. arm_fir_sparse_instance_q15 * S,
  4102. q15_t * pSrc,
  4103. q15_t * pDst,
  4104. q15_t * pScratchIn,
  4105. q31_t * pScratchOut,
  4106. uint32_t blockSize);
  4107. /**
  4108. * @brief Initialization function for the Q15 sparse FIR filter.
  4109. * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
  4110. * @param[in] numTaps number of nonzero coefficients in the filter.
  4111. * @param[in] *pCoeffs points to the array of filter coefficients.
  4112. * @param[in] *pState points to the state buffer.
  4113. * @param[in] *pTapDelay points to the array of offset times.
  4114. * @param[in] maxDelay maximum offset time supported.
  4115. * @param[in] blockSize number of samples that will be processed per block.
  4116. * @return none
  4117. */
  4118. void arm_fir_sparse_init_q15(
  4119. arm_fir_sparse_instance_q15 * S,
  4120. uint16_t numTaps,
  4121. q15_t * pCoeffs,
  4122. q15_t * pState,
  4123. int32_t * pTapDelay,
  4124. uint16_t maxDelay,
  4125. uint32_t blockSize);
  4126. /**
  4127. * @brief Processing function for the Q7 sparse FIR filter.
  4128. * @param[in] *S points to an instance of the Q7 sparse FIR structure.
  4129. * @param[in] *pSrc points to the block of input data.
  4130. * @param[out] *pDst points to the block of output data
  4131. * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
  4132. * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
  4133. * @param[in] blockSize number of input samples to process per call.
  4134. * @return none.
  4135. */
  4136. void arm_fir_sparse_q7(
  4137. arm_fir_sparse_instance_q7 * S,
  4138. q7_t * pSrc,
  4139. q7_t * pDst,
  4140. q7_t * pScratchIn,
  4141. q31_t * pScratchOut,
  4142. uint32_t blockSize);
  4143. /**
  4144. * @brief Initialization function for the Q7 sparse FIR filter.
  4145. * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
  4146. * @param[in] numTaps number of nonzero coefficients in the filter.
  4147. * @param[in] *pCoeffs points to the array of filter coefficients.
  4148. * @param[in] *pState points to the state buffer.
  4149. * @param[in] *pTapDelay points to the array of offset times.
  4150. * @param[in] maxDelay maximum offset time supported.
  4151. * @param[in] blockSize number of samples that will be processed per block.
  4152. * @return none
  4153. */
  4154. void arm_fir_sparse_init_q7(
  4155. arm_fir_sparse_instance_q7 * S,
  4156. uint16_t numTaps,
  4157. q7_t * pCoeffs,
  4158. q7_t * pState,
  4159. int32_t * pTapDelay,
  4160. uint16_t maxDelay,
  4161. uint32_t blockSize);
  4162. /*
  4163. * @brief Floating-point sin_cos function.
  4164. * @param[in] theta input value in degrees
  4165. * @param[out] *pSinVal points to the processed sine output.
  4166. * @param[out] *pCosVal points to the processed cos output.
  4167. * @return none.
  4168. */
  4169. void arm_sin_cos_f32(
  4170. float32_t theta,
  4171. float32_t * pSinVal,
  4172. float32_t * pCcosVal);
  4173. /*
  4174. * @brief Q31 sin_cos function.
  4175. * @param[in] theta scaled input value in degrees
  4176. * @param[out] *pSinVal points to the processed sine output.
  4177. * @param[out] *pCosVal points to the processed cosine output.
  4178. * @return none.
  4179. */
  4180. void arm_sin_cos_q31(
  4181. q31_t theta,
  4182. q31_t * pSinVal,
  4183. q31_t * pCosVal);
  4184. /**
  4185. * @brief Floating-point complex conjugate.
  4186. * @param[in] *pSrc points to the input vector
  4187. * @param[out] *pDst points to the output vector
  4188. * @param[in] numSamples number of complex samples in each vector
  4189. * @return none.
  4190. */
  4191. void arm_cmplx_conj_f32(
  4192. float32_t * pSrc,
  4193. float32_t * pDst,
  4194. uint32_t numSamples);
  4195. /**
  4196. * @brief Q31 complex conjugate.
  4197. * @param[in] *pSrc points to the input vector
  4198. * @param[out] *pDst points to the output vector
  4199. * @param[in] numSamples number of complex samples in each vector
  4200. * @return none.
  4201. */
  4202. void arm_cmplx_conj_q31(
  4203. q31_t * pSrc,
  4204. q31_t * pDst,
  4205. uint32_t numSamples);
  4206. /**
  4207. * @brief Q15 complex conjugate.
  4208. * @param[in] *pSrc points to the input vector
  4209. * @param[out] *pDst points to the output vector
  4210. * @param[in] numSamples number of complex samples in each vector
  4211. * @return none.
  4212. */
  4213. void arm_cmplx_conj_q15(
  4214. q15_t * pSrc,
  4215. q15_t * pDst,
  4216. uint32_t numSamples);
  4217. /**
  4218. * @brief Floating-point complex magnitude squared
  4219. * @param[in] *pSrc points to the complex input vector
  4220. * @param[out] *pDst points to the real output vector
  4221. * @param[in] numSamples number of complex samples in the input vector
  4222. * @return none.
  4223. */
  4224. void arm_cmplx_mag_squared_f32(
  4225. float32_t * pSrc,
  4226. float32_t * pDst,
  4227. uint32_t numSamples);
  4228. /**
  4229. * @brief Q31 complex magnitude squared
  4230. * @param[in] *pSrc points to the complex input vector
  4231. * @param[out] *pDst points to the real output vector
  4232. * @param[in] numSamples number of complex samples in the input vector
  4233. * @return none.
  4234. */
  4235. void arm_cmplx_mag_squared_q31(
  4236. q31_t * pSrc,
  4237. q31_t * pDst,
  4238. uint32_t numSamples);
  4239. /**
  4240. * @brief Q15 complex magnitude squared
  4241. * @param[in] *pSrc points to the complex input vector
  4242. * @param[out] *pDst points to the real output vector
  4243. * @param[in] numSamples number of complex samples in the input vector
  4244. * @return none.
  4245. */
  4246. void arm_cmplx_mag_squared_q15(
  4247. q15_t * pSrc,
  4248. q15_t * pDst,
  4249. uint32_t numSamples);
  4250. /**
  4251. * @ingroup groupController
  4252. */
  4253. /**
  4254. * @defgroup PID PID Motor Control
  4255. *
  4256. * A Proportional Integral Derivative (PID) controller is a generic feedback control
  4257. * loop mechanism widely used in industrial control systems.
  4258. * A PID controller is the most commonly used type of feedback controller.
  4259. *
  4260. * This set of functions implements (PID) controllers
  4261. * for Q15, Q31, and floating-point data types. The functions operate on a single sample
  4262. * of data and each call to the function returns a single processed value.
  4263. * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
  4264. * is the input sample value. The functions return the output value.
  4265. *
  4266. * \par Algorithm:
  4267. * <pre>
  4268. * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
  4269. * A0 = Kp + Ki + Kd
  4270. * A1 = (-Kp ) - (2 * Kd )
  4271. * A2 = Kd </pre>
  4272. *
  4273. * \par
  4274. * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
  4275. *
  4276. * \par
  4277. * \image html PID.gif "Proportional Integral Derivative Controller"
  4278. *
  4279. * \par
  4280. * The PID controller calculates an "error" value as the difference between
  4281. * the measured output and the reference input.
  4282. * The controller attempts to minimize the error by adjusting the process control inputs.
  4283. * The proportional value determines the reaction to the current error,
  4284. * the integral value determines the reaction based on the sum of recent errors,
  4285. * and the derivative value determines the reaction based on the rate at which the error has been changing.
  4286. *
  4287. * \par Instance Structure
  4288. * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
  4289. * A separate instance structure must be defined for each PID Controller.
  4290. * There are separate instance structure declarations for each of the 3 supported data types.
  4291. *
  4292. * \par Reset Functions
  4293. * There is also an associated reset function for each data type which clears the state array.
  4294. *
  4295. * \par Initialization Functions
  4296. * There is also an associated initialization function for each data type.
  4297. * The initialization function performs the following operations:
  4298. * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
  4299. * - Zeros out the values in the state buffer.
  4300. *
  4301. * \par
  4302. * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
  4303. *
  4304. * \par Fixed-Point Behavior
  4305. * Care must be taken when using the fixed-point versions of the PID Controller functions.
  4306. * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
  4307. * Refer to the function specific documentation below for usage guidelines.
  4308. */
  4309. /**
  4310. * @addtogroup PID
  4311. * @{
  4312. */
  4313. /**
  4314. * @brief Process function for the floating-point PID Control.
  4315. * @param[in,out] *S is an instance of the floating-point PID Control structure
  4316. * @param[in] in input sample to process
  4317. * @return out processed output sample.
  4318. */
  4319. static __INLINE float32_t arm_pid_f32(
  4320. arm_pid_instance_f32 * S,
  4321. float32_t in)
  4322. {
  4323. float32_t out;
  4324. /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
  4325. out = (S->A0 * in) +
  4326. (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
  4327. /* Update state */
  4328. S->state[1] = S->state[0];
  4329. S->state[0] = in;
  4330. S->state[2] = out;
  4331. /* return to application */
  4332. return (out);
  4333. }
  4334. /**
  4335. * @brief Process function for the Q31 PID Control.
  4336. * @param[in,out] *S points to an instance of the Q31 PID Control structure
  4337. * @param[in] in input sample to process
  4338. * @return out processed output sample.
  4339. *
  4340. * <b>Scaling and Overflow Behavior:</b>
  4341. * \par
  4342. * The function is implemented using an internal 64-bit accumulator.
  4343. * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
  4344. * Thus, if the accumulator result overflows it wraps around rather than clip.
  4345. * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
  4346. * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
  4347. */
  4348. static __INLINE q31_t arm_pid_q31(
  4349. arm_pid_instance_q31 * S,
  4350. q31_t in)
  4351. {
  4352. q63_t acc;
  4353. q31_t out;
  4354. /* acc = A0 * x[n] */
  4355. acc = (q63_t) S->A0 * in;
  4356. /* acc += A1 * x[n-1] */
  4357. acc += (q63_t) S->A1 * S->state[0];
  4358. /* acc += A2 * x[n-2] */
  4359. acc += (q63_t) S->A2 * S->state[1];
  4360. /* convert output to 1.31 format to add y[n-1] */
  4361. out = (q31_t) (acc >> 31u);
  4362. /* out += y[n-1] */
  4363. out += S->state[2];
  4364. /* Update state */
  4365. S->state[1] = S->state[0];
  4366. S->state[0] = in;
  4367. S->state[2] = out;
  4368. /* return to application */
  4369. return (out);
  4370. }
  4371. /**
  4372. * @brief Process function for the Q15 PID Control.
  4373. * @param[in,out] *S points to an instance of the Q15 PID Control structure
  4374. * @param[in] in input sample to process
  4375. * @return out processed output sample.
  4376. *
  4377. * <b>Scaling and Overflow Behavior:</b>
  4378. * \par
  4379. * The function is implemented using a 64-bit internal accumulator.
  4380. * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
  4381. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
  4382. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
  4383. * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
  4384. * Lastly, the accumulator is saturated to yield a result in 1.15 format.
  4385. */
  4386. static __INLINE q15_t arm_pid_q15(
  4387. arm_pid_instance_q15 * S,
  4388. q15_t in)
  4389. {
  4390. q63_t acc;
  4391. q15_t out;
  4392. #ifndef ARM_MATH_CM0_FAMILY
  4393. __SIMD32_TYPE *vstate;
  4394. /* Implementation of PID controller */
  4395. /* acc = A0 * x[n] */
  4396. acc = (q31_t) __SMUAD(S->A0, in);
  4397. /* acc += A1 * x[n-1] + A2 * x[n-2] */
  4398. vstate = __SIMD32_CONST(S->state);
  4399. acc = __SMLALD(S->A1, (q31_t) *vstate, acc);
  4400. #else
  4401. /* acc = A0 * x[n] */
  4402. acc = ((q31_t) S->A0) * in;
  4403. /* acc += A1 * x[n-1] + A2 * x[n-2] */
  4404. acc += (q31_t) S->A1 * S->state[0];
  4405. acc += (q31_t) S->A2 * S->state[1];
  4406. #endif
  4407. /* acc += y[n-1] */
  4408. acc += (q31_t) S->state[2] << 15;
  4409. /* saturate the output */
  4410. out = (q15_t) (__SSAT((acc >> 15), 16));
  4411. /* Update state */
  4412. S->state[1] = S->state[0];
  4413. S->state[0] = in;
  4414. S->state[2] = out;
  4415. /* return to application */
  4416. return (out);
  4417. }
  4418. /**
  4419. * @} end of PID group
  4420. */
  4421. /**
  4422. * @brief Floating-point matrix inverse.
  4423. * @param[in] *src points to the instance of the input floating-point matrix structure.
  4424. * @param[out] *dst points to the instance of the output floating-point matrix structure.
  4425. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
  4426. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
  4427. */
  4428. arm_status arm_mat_inverse_f32(
  4429. const arm_matrix_instance_f32 * src,
  4430. arm_matrix_instance_f32 * dst);
  4431. /**
  4432. * @brief Floating-point matrix inverse.
  4433. * @param[in] *src points to the instance of the input floating-point matrix structure.
  4434. * @param[out] *dst points to the instance of the output floating-point matrix structure.
  4435. * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
  4436. * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
  4437. */
  4438. arm_status arm_mat_inverse_f64(
  4439. const arm_matrix_instance_f64 * src,
  4440. arm_matrix_instance_f64 * dst);
  4441. /**
  4442. * @ingroup groupController
  4443. */
  4444. /**
  4445. * @defgroup clarke Vector Clarke Transform
  4446. * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
  4447. * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
  4448. * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
  4449. * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
  4450. * \image html clarke.gif Stator current space vector and its components in (a,b).
  4451. * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
  4452. * can be calculated using only <code>Ia</code> and <code>Ib</code>.
  4453. *
  4454. * The function operates on a single sample of data and each call to the function returns the processed output.
  4455. * The library provides separate functions for Q31 and floating-point data types.
  4456. * \par Algorithm
  4457. * \image html clarkeFormula.gif
  4458. * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
  4459. * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
  4460. * \par Fixed-Point Behavior
  4461. * Care must be taken when using the Q31 version of the Clarke transform.
  4462. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4463. * Refer to the function specific documentation below for usage guidelines.
  4464. */
  4465. /**
  4466. * @addtogroup clarke
  4467. * @{
  4468. */
  4469. /**
  4470. *
  4471. * @brief Floating-point Clarke transform
  4472. * @param[in] Ia input three-phase coordinate <code>a</code>
  4473. * @param[in] Ib input three-phase coordinate <code>b</code>
  4474. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4475. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4476. * @return none.
  4477. */
  4478. static __INLINE void arm_clarke_f32(
  4479. float32_t Ia,
  4480. float32_t Ib,
  4481. float32_t * pIalpha,
  4482. float32_t * pIbeta)
  4483. {
  4484. /* Calculate pIalpha using the equation, pIalpha = Ia */
  4485. *pIalpha = Ia;
  4486. /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
  4487. *pIbeta =
  4488. ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
  4489. }
  4490. /**
  4491. * @brief Clarke transform for Q31 version
  4492. * @param[in] Ia input three-phase coordinate <code>a</code>
  4493. * @param[in] Ib input three-phase coordinate <code>b</code>
  4494. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4495. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4496. * @return none.
  4497. *
  4498. * <b>Scaling and Overflow Behavior:</b>
  4499. * \par
  4500. * The function is implemented using an internal 32-bit accumulator.
  4501. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4502. * There is saturation on the addition, hence there is no risk of overflow.
  4503. */
  4504. static __INLINE void arm_clarke_q31(
  4505. q31_t Ia,
  4506. q31_t Ib,
  4507. q31_t * pIalpha,
  4508. q31_t * pIbeta)
  4509. {
  4510. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4511. /* Calculating pIalpha from Ia by equation pIalpha = Ia */
  4512. *pIalpha = Ia;
  4513. /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
  4514. product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
  4515. /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
  4516. product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
  4517. /* pIbeta is calculated by adding the intermediate products */
  4518. *pIbeta = __QADD(product1, product2);
  4519. }
  4520. /**
  4521. * @} end of clarke group
  4522. */
  4523. /**
  4524. * @brief Converts the elements of the Q7 vector to Q31 vector.
  4525. * @param[in] *pSrc input pointer
  4526. * @param[out] *pDst output pointer
  4527. * @param[in] blockSize number of samples to process
  4528. * @return none.
  4529. */
  4530. void arm_q7_to_q31(
  4531. q7_t * pSrc,
  4532. q31_t * pDst,
  4533. uint32_t blockSize);
  4534. /**
  4535. * @ingroup groupController
  4536. */
  4537. /**
  4538. * @defgroup inv_clarke Vector Inverse Clarke Transform
  4539. * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
  4540. *
  4541. * The function operates on a single sample of data and each call to the function returns the processed output.
  4542. * The library provides separate functions for Q31 and floating-point data types.
  4543. * \par Algorithm
  4544. * \image html clarkeInvFormula.gif
  4545. * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
  4546. * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
  4547. * \par Fixed-Point Behavior
  4548. * Care must be taken when using the Q31 version of the Clarke transform.
  4549. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4550. * Refer to the function specific documentation below for usage guidelines.
  4551. */
  4552. /**
  4553. * @addtogroup inv_clarke
  4554. * @{
  4555. */
  4556. /**
  4557. * @brief Floating-point Inverse Clarke transform
  4558. * @param[in] Ialpha input two-phase orthogonal vector axis alpha
  4559. * @param[in] Ibeta input two-phase orthogonal vector axis beta
  4560. * @param[out] *pIa points to output three-phase coordinate <code>a</code>
  4561. * @param[out] *pIb points to output three-phase coordinate <code>b</code>
  4562. * @return none.
  4563. */
  4564. static __INLINE void arm_inv_clarke_f32(
  4565. float32_t Ialpha,
  4566. float32_t Ibeta,
  4567. float32_t * pIa,
  4568. float32_t * pIb)
  4569. {
  4570. /* Calculating pIa from Ialpha by equation pIa = Ialpha */
  4571. *pIa = Ialpha;
  4572. /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
  4573. *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
  4574. }
  4575. /**
  4576. * @brief Inverse Clarke transform for Q31 version
  4577. * @param[in] Ialpha input two-phase orthogonal vector axis alpha
  4578. * @param[in] Ibeta input two-phase orthogonal vector axis beta
  4579. * @param[out] *pIa points to output three-phase coordinate <code>a</code>
  4580. * @param[out] *pIb points to output three-phase coordinate <code>b</code>
  4581. * @return none.
  4582. *
  4583. * <b>Scaling and Overflow Behavior:</b>
  4584. * \par
  4585. * The function is implemented using an internal 32-bit accumulator.
  4586. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4587. * There is saturation on the subtraction, hence there is no risk of overflow.
  4588. */
  4589. static __INLINE void arm_inv_clarke_q31(
  4590. q31_t Ialpha,
  4591. q31_t Ibeta,
  4592. q31_t * pIa,
  4593. q31_t * pIb)
  4594. {
  4595. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4596. /* Calculating pIa from Ialpha by equation pIa = Ialpha */
  4597. *pIa = Ialpha;
  4598. /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
  4599. product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
  4600. /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
  4601. product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
  4602. /* pIb is calculated by subtracting the products */
  4603. *pIb = __QSUB(product2, product1);
  4604. }
  4605. /**
  4606. * @} end of inv_clarke group
  4607. */
  4608. /**
  4609. * @brief Converts the elements of the Q7 vector to Q15 vector.
  4610. * @param[in] *pSrc input pointer
  4611. * @param[out] *pDst output pointer
  4612. * @param[in] blockSize number of samples to process
  4613. * @return none.
  4614. */
  4615. void arm_q7_to_q15(
  4616. q7_t * pSrc,
  4617. q15_t * pDst,
  4618. uint32_t blockSize);
  4619. /**
  4620. * @ingroup groupController
  4621. */
  4622. /**
  4623. * @defgroup park Vector Park Transform
  4624. *
  4625. * Forward Park transform converts the input two-coordinate vector to flux and torque components.
  4626. * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
  4627. * from the stationary to the moving reference frame and control the spatial relationship between
  4628. * the stator vector current and rotor flux vector.
  4629. * If we consider the d axis aligned with the rotor flux, the diagram below shows the
  4630. * current vector and the relationship from the two reference frames:
  4631. * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
  4632. *
  4633. * The function operates on a single sample of data and each call to the function returns the processed output.
  4634. * The library provides separate functions for Q31 and floating-point data types.
  4635. * \par Algorithm
  4636. * \image html parkFormula.gif
  4637. * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
  4638. * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
  4639. * cosine and sine values of theta (rotor flux position).
  4640. * \par Fixed-Point Behavior
  4641. * Care must be taken when using the Q31 version of the Park transform.
  4642. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4643. * Refer to the function specific documentation below for usage guidelines.
  4644. */
  4645. /**
  4646. * @addtogroup park
  4647. * @{
  4648. */
  4649. /**
  4650. * @brief Floating-point Park transform
  4651. * @param[in] Ialpha input two-phase vector coordinate alpha
  4652. * @param[in] Ibeta input two-phase vector coordinate beta
  4653. * @param[out] *pId points to output rotor reference frame d
  4654. * @param[out] *pIq points to output rotor reference frame q
  4655. * @param[in] sinVal sine value of rotation angle theta
  4656. * @param[in] cosVal cosine value of rotation angle theta
  4657. * @return none.
  4658. *
  4659. * The function implements the forward Park transform.
  4660. *
  4661. */
  4662. static __INLINE void arm_park_f32(
  4663. float32_t Ialpha,
  4664. float32_t Ibeta,
  4665. float32_t * pId,
  4666. float32_t * pIq,
  4667. float32_t sinVal,
  4668. float32_t cosVal)
  4669. {
  4670. /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
  4671. *pId = Ialpha * cosVal + Ibeta * sinVal;
  4672. /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
  4673. *pIq = -Ialpha * sinVal + Ibeta * cosVal;
  4674. }
  4675. /**
  4676. * @brief Park transform for Q31 version
  4677. * @param[in] Ialpha input two-phase vector coordinate alpha
  4678. * @param[in] Ibeta input two-phase vector coordinate beta
  4679. * @param[out] *pId points to output rotor reference frame d
  4680. * @param[out] *pIq points to output rotor reference frame q
  4681. * @param[in] sinVal sine value of rotation angle theta
  4682. * @param[in] cosVal cosine value of rotation angle theta
  4683. * @return none.
  4684. *
  4685. * <b>Scaling and Overflow Behavior:</b>
  4686. * \par
  4687. * The function is implemented using an internal 32-bit accumulator.
  4688. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4689. * There is saturation on the addition and subtraction, hence there is no risk of overflow.
  4690. */
  4691. static __INLINE void arm_park_q31(
  4692. q31_t Ialpha,
  4693. q31_t Ibeta,
  4694. q31_t * pId,
  4695. q31_t * pIq,
  4696. q31_t sinVal,
  4697. q31_t cosVal)
  4698. {
  4699. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4700. q31_t product3, product4; /* Temporary variables used to store intermediate results */
  4701. /* Intermediate product is calculated by (Ialpha * cosVal) */
  4702. product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
  4703. /* Intermediate product is calculated by (Ibeta * sinVal) */
  4704. product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
  4705. /* Intermediate product is calculated by (Ialpha * sinVal) */
  4706. product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
  4707. /* Intermediate product is calculated by (Ibeta * cosVal) */
  4708. product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
  4709. /* Calculate pId by adding the two intermediate products 1 and 2 */
  4710. *pId = __QADD(product1, product2);
  4711. /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
  4712. *pIq = __QSUB(product4, product3);
  4713. }
  4714. /**
  4715. * @} end of park group
  4716. */
  4717. /**
  4718. * @brief Converts the elements of the Q7 vector to floating-point vector.
  4719. * @param[in] *pSrc is input pointer
  4720. * @param[out] *pDst is output pointer
  4721. * @param[in] blockSize is the number of samples to process
  4722. * @return none.
  4723. */
  4724. void arm_q7_to_float(
  4725. q7_t * pSrc,
  4726. float32_t * pDst,
  4727. uint32_t blockSize);
  4728. /**
  4729. * @ingroup groupController
  4730. */
  4731. /**
  4732. * @defgroup inv_park Vector Inverse Park transform
  4733. * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
  4734. *
  4735. * The function operates on a single sample of data and each call to the function returns the processed output.
  4736. * The library provides separate functions for Q31 and floating-point data types.
  4737. * \par Algorithm
  4738. * \image html parkInvFormula.gif
  4739. * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
  4740. * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
  4741. * cosine and sine values of theta (rotor flux position).
  4742. * \par Fixed-Point Behavior
  4743. * Care must be taken when using the Q31 version of the Park transform.
  4744. * In particular, the overflow and saturation behavior of the accumulator used must be considered.
  4745. * Refer to the function specific documentation below for usage guidelines.
  4746. */
  4747. /**
  4748. * @addtogroup inv_park
  4749. * @{
  4750. */
  4751. /**
  4752. * @brief Floating-point Inverse Park transform
  4753. * @param[in] Id input coordinate of rotor reference frame d
  4754. * @param[in] Iq input coordinate of rotor reference frame q
  4755. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4756. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4757. * @param[in] sinVal sine value of rotation angle theta
  4758. * @param[in] cosVal cosine value of rotation angle theta
  4759. * @return none.
  4760. */
  4761. static __INLINE void arm_inv_park_f32(
  4762. float32_t Id,
  4763. float32_t Iq,
  4764. float32_t * pIalpha,
  4765. float32_t * pIbeta,
  4766. float32_t sinVal,
  4767. float32_t cosVal)
  4768. {
  4769. /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
  4770. *pIalpha = Id * cosVal - Iq * sinVal;
  4771. /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
  4772. *pIbeta = Id * sinVal + Iq * cosVal;
  4773. }
  4774. /**
  4775. * @brief Inverse Park transform for Q31 version
  4776. * @param[in] Id input coordinate of rotor reference frame d
  4777. * @param[in] Iq input coordinate of rotor reference frame q
  4778. * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
  4779. * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
  4780. * @param[in] sinVal sine value of rotation angle theta
  4781. * @param[in] cosVal cosine value of rotation angle theta
  4782. * @return none.
  4783. *
  4784. * <b>Scaling and Overflow Behavior:</b>
  4785. * \par
  4786. * The function is implemented using an internal 32-bit accumulator.
  4787. * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
  4788. * There is saturation on the addition, hence there is no risk of overflow.
  4789. */
  4790. static __INLINE void arm_inv_park_q31(
  4791. q31_t Id,
  4792. q31_t Iq,
  4793. q31_t * pIalpha,
  4794. q31_t * pIbeta,
  4795. q31_t sinVal,
  4796. q31_t cosVal)
  4797. {
  4798. q31_t product1, product2; /* Temporary variables used to store intermediate results */
  4799. q31_t product3, product4; /* Temporary variables used to store intermediate results */
  4800. /* Intermediate product is calculated by (Id * cosVal) */
  4801. product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
  4802. /* Intermediate product is calculated by (Iq * sinVal) */
  4803. product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
  4804. /* Intermediate product is calculated by (Id * sinVal) */
  4805. product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
  4806. /* Intermediate product is calculated by (Iq * cosVal) */
  4807. product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
  4808. /* Calculate pIalpha by using the two intermediate products 1 and 2 */
  4809. *pIalpha = __QSUB(product1, product2);
  4810. /* Calculate pIbeta by using the two intermediate products 3 and 4 */
  4811. *pIbeta = __QADD(product4, product3);
  4812. }
  4813. /**
  4814. * @} end of Inverse park group
  4815. */
  4816. /**
  4817. * @brief Converts the elements of the Q31 vector to floating-point vector.
  4818. * @param[in] *pSrc is input pointer
  4819. * @param[out] *pDst is output pointer
  4820. * @param[in] blockSize is the number of samples to process
  4821. * @return none.
  4822. */
  4823. void arm_q31_to_float(
  4824. q31_t * pSrc,
  4825. float32_t * pDst,
  4826. uint32_t blockSize);
  4827. /**
  4828. * @ingroup groupInterpolation
  4829. */
  4830. /**
  4831. * @defgroup LinearInterpolate Linear Interpolation
  4832. *
  4833. * Linear interpolation is a method of curve fitting using linear polynomials.
  4834. * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
  4835. *
  4836. * \par
  4837. * \image html LinearInterp.gif "Linear interpolation"
  4838. *
  4839. * \par
  4840. * A Linear Interpolate function calculates an output value(y), for the input(x)
  4841. * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
  4842. *
  4843. * \par Algorithm:
  4844. * <pre>
  4845. * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
  4846. * where x0, x1 are nearest values of input x
  4847. * y0, y1 are nearest values to output y
  4848. * </pre>
  4849. *
  4850. * \par
  4851. * This set of functions implements Linear interpolation process
  4852. * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
  4853. * sample of data and each call to the function returns a single processed value.
  4854. * <code>S</code> points to an instance of the Linear Interpolate function data structure.
  4855. * <code>x</code> is the input sample value. The functions returns the output value.
  4856. *
  4857. * \par
  4858. * if x is outside of the table boundary, Linear interpolation returns first value of the table
  4859. * if x is below input range and returns last value of table if x is above range.
  4860. */
  4861. /**
  4862. * @addtogroup LinearInterpolate
  4863. * @{
  4864. */
  4865. /**
  4866. * @brief Process function for the floating-point Linear Interpolation Function.
  4867. * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
  4868. * @param[in] x input sample to process
  4869. * @return y processed output sample.
  4870. *
  4871. */
  4872. static __INLINE float32_t arm_linear_interp_f32(
  4873. arm_linear_interp_instance_f32 * S,
  4874. float32_t x)
  4875. {
  4876. float32_t y;
  4877. float32_t x0, x1; /* Nearest input values */
  4878. float32_t y0, y1; /* Nearest output values */
  4879. float32_t xSpacing = S->xSpacing; /* spacing between input values */
  4880. int32_t i; /* Index variable */
  4881. float32_t *pYData = S->pYData; /* pointer to output table */
  4882. /* Calculation of index */
  4883. i = (int32_t) ((x - S->x1) / xSpacing);
  4884. if(i < 0)
  4885. {
  4886. /* Iniatilize output for below specified range as least output value of table */
  4887. y = pYData[0];
  4888. }
  4889. else if((uint32_t)i >= S->nValues)
  4890. {
  4891. /* Iniatilize output for above specified range as last output value of table */
  4892. y = pYData[S->nValues - 1];
  4893. }
  4894. else
  4895. {
  4896. /* Calculation of nearest input values */
  4897. x0 = S->x1 + i * xSpacing;
  4898. x1 = S->x1 + (i + 1) * xSpacing;
  4899. /* Read of nearest output values */
  4900. y0 = pYData[i];
  4901. y1 = pYData[i + 1];
  4902. /* Calculation of output */
  4903. y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
  4904. }
  4905. /* returns output value */
  4906. return (y);
  4907. }
  4908. /**
  4909. *
  4910. * @brief Process function for the Q31 Linear Interpolation Function.
  4911. * @param[in] *pYData pointer to Q31 Linear Interpolation table
  4912. * @param[in] x input sample to process
  4913. * @param[in] nValues number of table values
  4914. * @return y processed output sample.
  4915. *
  4916. * \par
  4917. * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
  4918. * This function can support maximum of table size 2^12.
  4919. *
  4920. */
  4921. static __INLINE q31_t arm_linear_interp_q31(
  4922. q31_t * pYData,
  4923. q31_t x,
  4924. uint32_t nValues)
  4925. {
  4926. q31_t y; /* output */
  4927. q31_t y0, y1; /* Nearest output values */
  4928. q31_t fract; /* fractional part */
  4929. int32_t index; /* Index to read nearest output values */
  4930. /* Input is in 12.20 format */
  4931. /* 12 bits for the table index */
  4932. /* Index value calculation */
  4933. index = ((x & 0xFFF00000) >> 20);
  4934. if(index >= (int32_t)(nValues - 1))
  4935. {
  4936. return (pYData[nValues - 1]);
  4937. }
  4938. else if(index < 0)
  4939. {
  4940. return (pYData[0]);
  4941. }
  4942. else
  4943. {
  4944. /* 20 bits for the fractional part */
  4945. /* shift left by 11 to keep fract in 1.31 format */
  4946. fract = (x & 0x000FFFFF) << 11;
  4947. /* Read two nearest output values from the index in 1.31(q31) format */
  4948. y0 = pYData[index];
  4949. y1 = pYData[index + 1u];
  4950. /* Calculation of y0 * (1-fract) and y is in 2.30 format */
  4951. y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
  4952. /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
  4953. y += ((q31_t) (((q63_t) y1 * fract) >> 32));
  4954. /* Convert y to 1.31 format */
  4955. return (y << 1u);
  4956. }
  4957. }
  4958. /**
  4959. *
  4960. * @brief Process function for the Q15 Linear Interpolation Function.
  4961. * @param[in] *pYData pointer to Q15 Linear Interpolation table
  4962. * @param[in] x input sample to process
  4963. * @param[in] nValues number of table values
  4964. * @return y processed output sample.
  4965. *
  4966. * \par
  4967. * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
  4968. * This function can support maximum of table size 2^12.
  4969. *
  4970. */
  4971. static __INLINE q15_t arm_linear_interp_q15(
  4972. q15_t * pYData,
  4973. q31_t x,
  4974. uint32_t nValues)
  4975. {
  4976. q63_t y; /* output */
  4977. q15_t y0, y1; /* Nearest output values */
  4978. q31_t fract; /* fractional part */
  4979. int32_t index; /* Index to read nearest output values */
  4980. /* Input is in 12.20 format */
  4981. /* 12 bits for the table index */
  4982. /* Index value calculation */
  4983. index = ((x & 0xFFF00000) >> 20u);
  4984. if(index >= (int32_t)(nValues - 1))
  4985. {
  4986. return (pYData[nValues - 1]);
  4987. }
  4988. else if(index < 0)
  4989. {
  4990. return (pYData[0]);
  4991. }
  4992. else
  4993. {
  4994. /* 20 bits for the fractional part */
  4995. /* fract is in 12.20 format */
  4996. fract = (x & 0x000FFFFF);
  4997. /* Read two nearest output values from the index */
  4998. y0 = pYData[index];
  4999. y1 = pYData[index + 1u];
  5000. /* Calculation of y0 * (1-fract) and y is in 13.35 format */
  5001. y = ((q63_t) y0 * (0xFFFFF - fract));
  5002. /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
  5003. y += ((q63_t) y1 * (fract));
  5004. /* convert y to 1.15 format */
  5005. return (y >> 20);
  5006. }
  5007. }
  5008. /**
  5009. *
  5010. * @brief Process function for the Q7 Linear Interpolation Function.
  5011. * @param[in] *pYData pointer to Q7 Linear Interpolation table
  5012. * @param[in] x input sample to process
  5013. * @param[in] nValues number of table values
  5014. * @return y processed output sample.
  5015. *
  5016. * \par
  5017. * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
  5018. * This function can support maximum of table size 2^12.
  5019. */
  5020. static __INLINE q7_t arm_linear_interp_q7(
  5021. q7_t * pYData,
  5022. q31_t x,
  5023. uint32_t nValues)
  5024. {
  5025. q31_t y; /* output */
  5026. q7_t y0, y1; /* Nearest output values */
  5027. q31_t fract; /* fractional part */
  5028. uint32_t index; /* Index to read nearest output values */
  5029. /* Input is in 12.20 format */
  5030. /* 12 bits for the table index */
  5031. /* Index value calculation */
  5032. if (x < 0)
  5033. {
  5034. return (pYData[0]);
  5035. }
  5036. index = (x >> 20) & 0xfff;
  5037. if(index >= (nValues - 1))
  5038. {
  5039. return (pYData[nValues - 1]);
  5040. }
  5041. else
  5042. {
  5043. /* 20 bits for the fractional part */
  5044. /* fract is in 12.20 format */
  5045. fract = (x & 0x000FFFFF);
  5046. /* Read two nearest output values from the index and are in 1.7(q7) format */
  5047. y0 = pYData[index];
  5048. y1 = pYData[index + 1u];
  5049. /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
  5050. y = ((y0 * (0xFFFFF - fract)));
  5051. /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
  5052. y += (y1 * fract);
  5053. /* convert y to 1.7(q7) format */
  5054. return (y >> 20u);
  5055. }
  5056. }
  5057. /**
  5058. * @} end of LinearInterpolate group
  5059. */
  5060. /**
  5061. * @brief Fast approximation to the trigonometric sine function for floating-point data.
  5062. * @param[in] x input value in radians.
  5063. * @return sin(x).
  5064. */
  5065. float32_t arm_sin_f32(
  5066. float32_t x);
  5067. /**
  5068. * @brief Fast approximation to the trigonometric sine function for Q31 data.
  5069. * @param[in] x Scaled input value in radians.
  5070. * @return sin(x).
  5071. */
  5072. q31_t arm_sin_q31(
  5073. q31_t x);
  5074. /**
  5075. * @brief Fast approximation to the trigonometric sine function for Q15 data.
  5076. * @param[in] x Scaled input value in radians.
  5077. * @return sin(x).
  5078. */
  5079. q15_t arm_sin_q15(
  5080. q15_t x);
  5081. /**
  5082. * @brief Fast approximation to the trigonometric cosine function for floating-point data.
  5083. * @param[in] x input value in radians.
  5084. * @return cos(x).
  5085. */
  5086. float32_t arm_cos_f32(
  5087. float32_t x);
  5088. /**
  5089. * @brief Fast approximation to the trigonometric cosine function for Q31 data.
  5090. * @param[in] x Scaled input value in radians.
  5091. * @return cos(x).
  5092. */
  5093. q31_t arm_cos_q31(
  5094. q31_t x);
  5095. /**
  5096. * @brief Fast approximation to the trigonometric cosine function for Q15 data.
  5097. * @param[in] x Scaled input value in radians.
  5098. * @return cos(x).
  5099. */
  5100. q15_t arm_cos_q15(
  5101. q15_t x);
  5102. /**
  5103. * @ingroup groupFastMath
  5104. */
  5105. /**
  5106. * @defgroup SQRT Square Root
  5107. *
  5108. * Computes the square root of a number.
  5109. * There are separate functions for Q15, Q31, and floating-point data types.
  5110. * The square root function is computed using the Newton-Raphson algorithm.
  5111. * This is an iterative algorithm of the form:
  5112. * <pre>
  5113. * x1 = x0 - f(x0)/f'(x0)
  5114. * </pre>
  5115. * where <code>x1</code> is the current estimate,
  5116. * <code>x0</code> is the previous estimate, and
  5117. * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
  5118. * For the square root function, the algorithm reduces to:
  5119. * <pre>
  5120. * x0 = in/2 [initial guess]
  5121. * x1 = 1/2 * ( x0 + in / x0) [each iteration]
  5122. * </pre>
  5123. */
  5124. /**
  5125. * @addtogroup SQRT
  5126. * @{
  5127. */
  5128. /**
  5129. * @brief Floating-point square root function.
  5130. * @param[in] in input value.
  5131. * @param[out] *pOut square root of input value.
  5132. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
  5133. * <code>in</code> is negative value and returns zero output for negative values.
  5134. */
  5135. static __INLINE arm_status arm_sqrt_f32(
  5136. float32_t in,
  5137. float32_t * pOut)
  5138. {
  5139. if(in > 0)
  5140. {
  5141. // #if __FPU_USED
  5142. #if (__FPU_USED == 1) && defined ( __CC_ARM )
  5143. *pOut = __sqrtf(in);
  5144. #else
  5145. *pOut = sqrtf(in);
  5146. #endif
  5147. return (ARM_MATH_SUCCESS);
  5148. }
  5149. else
  5150. {
  5151. *pOut = 0.0f;
  5152. return (ARM_MATH_ARGUMENT_ERROR);
  5153. }
  5154. }
  5155. /**
  5156. * @brief Q31 square root function.
  5157. * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
  5158. * @param[out] *pOut square root of input value.
  5159. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
  5160. * <code>in</code> is negative value and returns zero output for negative values.
  5161. */
  5162. arm_status arm_sqrt_q31(
  5163. q31_t in,
  5164. q31_t * pOut);
  5165. /**
  5166. * @brief Q15 square root function.
  5167. * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
  5168. * @param[out] *pOut square root of input value.
  5169. * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
  5170. * <code>in</code> is negative value and returns zero output for negative values.
  5171. */
  5172. arm_status arm_sqrt_q15(
  5173. q15_t in,
  5174. q15_t * pOut);
  5175. /**
  5176. * @} end of SQRT group
  5177. */
  5178. /**
  5179. * @brief floating-point Circular write function.
  5180. */
  5181. static __INLINE void arm_circularWrite_f32(
  5182. int32_t * circBuffer,
  5183. int32_t L,
  5184. uint16_t * writeOffset,
  5185. int32_t bufferInc,
  5186. const int32_t * src,
  5187. int32_t srcInc,
  5188. uint32_t blockSize)
  5189. {
  5190. uint32_t i = 0u;
  5191. int32_t wOffset;
  5192. /* Copy the value of Index pointer that points
  5193. * to the current location where the input samples to be copied */
  5194. wOffset = *writeOffset;
  5195. /* Loop over the blockSize */
  5196. i = blockSize;
  5197. while(i > 0u)
  5198. {
  5199. /* copy the input sample to the circular buffer */
  5200. circBuffer[wOffset] = *src;
  5201. /* Update the input pointer */
  5202. src += srcInc;
  5203. /* Circularly update wOffset. Watch out for positive and negative value */
  5204. wOffset += bufferInc;
  5205. if(wOffset >= L)
  5206. wOffset -= L;
  5207. /* Decrement the loop counter */
  5208. i--;
  5209. }
  5210. /* Update the index pointer */
  5211. *writeOffset = wOffset;
  5212. }
  5213. /**
  5214. * @brief floating-point Circular Read function.
  5215. */
  5216. static __INLINE void arm_circularRead_f32(
  5217. int32_t * circBuffer,
  5218. int32_t L,
  5219. int32_t * readOffset,
  5220. int32_t bufferInc,
  5221. int32_t * dst,
  5222. int32_t * dst_base,
  5223. int32_t dst_length,
  5224. int32_t dstInc,
  5225. uint32_t blockSize)
  5226. {
  5227. uint32_t i = 0u;
  5228. int32_t rOffset, dst_end;
  5229. /* Copy the value of Index pointer that points
  5230. * to the current location from where the input samples to be read */
  5231. rOffset = *readOffset;
  5232. dst_end = (int32_t) (dst_base + dst_length);
  5233. /* Loop over the blockSize */
  5234. i = blockSize;
  5235. while(i > 0u)
  5236. {
  5237. /* copy the sample from the circular buffer to the destination buffer */
  5238. *dst = circBuffer[rOffset];
  5239. /* Update the input pointer */
  5240. dst += dstInc;
  5241. if(dst == (int32_t *) dst_end)
  5242. {
  5243. dst = dst_base;
  5244. }
  5245. /* Circularly update rOffset. Watch out for positive and negative value */
  5246. rOffset += bufferInc;
  5247. if(rOffset >= L)
  5248. {
  5249. rOffset -= L;
  5250. }
  5251. /* Decrement the loop counter */
  5252. i--;
  5253. }
  5254. /* Update the index pointer */
  5255. *readOffset = rOffset;
  5256. }
  5257. /**
  5258. * @brief Q15 Circular write function.
  5259. */
  5260. static __INLINE void arm_circularWrite_q15(
  5261. q15_t * circBuffer,
  5262. int32_t L,
  5263. uint16_t * writeOffset,
  5264. int32_t bufferInc,
  5265. const q15_t * src,
  5266. int32_t srcInc,
  5267. uint32_t blockSize)
  5268. {
  5269. uint32_t i = 0u;
  5270. int32_t wOffset;
  5271. /* Copy the value of Index pointer that points
  5272. * to the current location where the input samples to be copied */
  5273. wOffset = *writeOffset;
  5274. /* Loop over the blockSize */
  5275. i = blockSize;
  5276. while(i > 0u)
  5277. {
  5278. /* copy the input sample to the circular buffer */
  5279. circBuffer[wOffset] = *src;
  5280. /* Update the input pointer */
  5281. src += srcInc;
  5282. /* Circularly update wOffset. Watch out for positive and negative value */
  5283. wOffset += bufferInc;
  5284. if(wOffset >= L)
  5285. wOffset -= L;
  5286. /* Decrement the loop counter */
  5287. i--;
  5288. }
  5289. /* Update the index pointer */
  5290. *writeOffset = wOffset;
  5291. }
  5292. /**
  5293. * @brief Q15 Circular Read function.
  5294. */
  5295. static __INLINE void arm_circularRead_q15(
  5296. q15_t * circBuffer,
  5297. int32_t L,
  5298. int32_t * readOffset,
  5299. int32_t bufferInc,
  5300. q15_t * dst,
  5301. q15_t * dst_base,
  5302. int32_t dst_length,
  5303. int32_t dstInc,
  5304. uint32_t blockSize)
  5305. {
  5306. uint32_t i = 0;
  5307. int32_t rOffset, dst_end;
  5308. /* Copy the value of Index pointer that points
  5309. * to the current location from where the input samples to be read */
  5310. rOffset = *readOffset;
  5311. dst_end = (int32_t) (dst_base + dst_length);
  5312. /* Loop over the blockSize */
  5313. i = blockSize;
  5314. while(i > 0u)
  5315. {
  5316. /* copy the sample from the circular buffer to the destination buffer */
  5317. *dst = circBuffer[rOffset];
  5318. /* Update the input pointer */
  5319. dst += dstInc;
  5320. if(dst == (q15_t *) dst_end)
  5321. {
  5322. dst = dst_base;
  5323. }
  5324. /* Circularly update wOffset. Watch out for positive and negative value */
  5325. rOffset += bufferInc;
  5326. if(rOffset >= L)
  5327. {
  5328. rOffset -= L;
  5329. }
  5330. /* Decrement the loop counter */
  5331. i--;
  5332. }
  5333. /* Update the index pointer */
  5334. *readOffset = rOffset;
  5335. }
  5336. /**
  5337. * @brief Q7 Circular write function.
  5338. */
  5339. static __INLINE void arm_circularWrite_q7(
  5340. q7_t * circBuffer,
  5341. int32_t L,
  5342. uint16_t * writeOffset,
  5343. int32_t bufferInc,
  5344. const q7_t * src,
  5345. int32_t srcInc,
  5346. uint32_t blockSize)
  5347. {
  5348. uint32_t i = 0u;
  5349. int32_t wOffset;
  5350. /* Copy the value of Index pointer that points
  5351. * to the current location where the input samples to be copied */
  5352. wOffset = *writeOffset;
  5353. /* Loop over the blockSize */
  5354. i = blockSize;
  5355. while(i > 0u)
  5356. {
  5357. /* copy the input sample to the circular buffer */
  5358. circBuffer[wOffset] = *src;
  5359. /* Update the input pointer */
  5360. src += srcInc;
  5361. /* Circularly update wOffset. Watch out for positive and negative value */
  5362. wOffset += bufferInc;
  5363. if(wOffset >= L)
  5364. wOffset -= L;
  5365. /* Decrement the loop counter */
  5366. i--;
  5367. }
  5368. /* Update the index pointer */
  5369. *writeOffset = wOffset;
  5370. }
  5371. /**
  5372. * @brief Q7 Circular Read function.
  5373. */
  5374. static __INLINE void arm_circularRead_q7(
  5375. q7_t * circBuffer,
  5376. int32_t L,
  5377. int32_t * readOffset,
  5378. int32_t bufferInc,
  5379. q7_t * dst,
  5380. q7_t * dst_base,
  5381. int32_t dst_length,
  5382. int32_t dstInc,
  5383. uint32_t blockSize)
  5384. {
  5385. uint32_t i = 0;
  5386. int32_t rOffset, dst_end;
  5387. /* Copy the value of Index pointer that points
  5388. * to the current location from where the input samples to be read */
  5389. rOffset = *readOffset;
  5390. dst_end = (int32_t) (dst_base + dst_length);
  5391. /* Loop over the blockSize */
  5392. i = blockSize;
  5393. while(i > 0u)
  5394. {
  5395. /* copy the sample from the circular buffer to the destination buffer */
  5396. *dst = circBuffer[rOffset];
  5397. /* Update the input pointer */
  5398. dst += dstInc;
  5399. if(dst == (q7_t *) dst_end)
  5400. {
  5401. dst = dst_base;
  5402. }
  5403. /* Circularly update rOffset. Watch out for positive and negative value */
  5404. rOffset += bufferInc;
  5405. if(rOffset >= L)
  5406. {
  5407. rOffset -= L;
  5408. }
  5409. /* Decrement the loop counter */
  5410. i--;
  5411. }
  5412. /* Update the index pointer */
  5413. *readOffset = rOffset;
  5414. }
  5415. /**
  5416. * @brief Sum of the squares of the elements of a Q31 vector.
  5417. * @param[in] *pSrc is input pointer
  5418. * @param[in] blockSize is the number of samples to process
  5419. * @param[out] *pResult is output value.
  5420. * @return none.
  5421. */
  5422. void arm_power_q31(
  5423. q31_t * pSrc,
  5424. uint32_t blockSize,
  5425. q63_t * pResult);
  5426. /**
  5427. * @brief Sum of the squares of the elements of a floating-point vector.
  5428. * @param[in] *pSrc is input pointer
  5429. * @param[in] blockSize is the number of samples to process
  5430. * @param[out] *pResult is output value.
  5431. * @return none.
  5432. */
  5433. void arm_power_f32(
  5434. float32_t * pSrc,
  5435. uint32_t blockSize,
  5436. float32_t * pResult);
  5437. /**
  5438. * @brief Sum of the squares of the elements of a Q15 vector.
  5439. * @param[in] *pSrc is input pointer
  5440. * @param[in] blockSize is the number of samples to process
  5441. * @param[out] *pResult is output value.
  5442. * @return none.
  5443. */
  5444. void arm_power_q15(
  5445. q15_t * pSrc,
  5446. uint32_t blockSize,
  5447. q63_t * pResult);
  5448. /**
  5449. * @brief Sum of the squares of the elements of a Q7 vector.
  5450. * @param[in] *pSrc is input pointer
  5451. * @param[in] blockSize is the number of samples to process
  5452. * @param[out] *pResult is output value.
  5453. * @return none.
  5454. */
  5455. void arm_power_q7(
  5456. q7_t * pSrc,
  5457. uint32_t blockSize,
  5458. q31_t * pResult);
  5459. /**
  5460. * @brief Mean value of a Q7 vector.
  5461. * @param[in] *pSrc is input pointer
  5462. * @param[in] blockSize is the number of samples to process
  5463. * @param[out] *pResult is output value.
  5464. * @return none.
  5465. */
  5466. void arm_mean_q7(
  5467. q7_t * pSrc,
  5468. uint32_t blockSize,
  5469. q7_t * pResult);
  5470. /**
  5471. * @brief Mean value of a Q15 vector.
  5472. * @param[in] *pSrc is input pointer
  5473. * @param[in] blockSize is the number of samples to process
  5474. * @param[out] *pResult is output value.
  5475. * @return none.
  5476. */
  5477. void arm_mean_q15(
  5478. q15_t * pSrc,
  5479. uint32_t blockSize,
  5480. q15_t * pResult);
  5481. /**
  5482. * @brief Mean value of a Q31 vector.
  5483. * @param[in] *pSrc is input pointer
  5484. * @param[in] blockSize is the number of samples to process
  5485. * @param[out] *pResult is output value.
  5486. * @return none.
  5487. */
  5488. void arm_mean_q31(
  5489. q31_t * pSrc,
  5490. uint32_t blockSize,
  5491. q31_t * pResult);
  5492. /**
  5493. * @brief Mean value of a floating-point vector.
  5494. * @param[in] *pSrc is input pointer
  5495. * @param[in] blockSize is the number of samples to process
  5496. * @param[out] *pResult is output value.
  5497. * @return none.
  5498. */
  5499. void arm_mean_f32(
  5500. float32_t * pSrc,
  5501. uint32_t blockSize,
  5502. float32_t * pResult);
  5503. /**
  5504. * @brief Variance of the elements of a floating-point vector.
  5505. * @param[in] *pSrc is input pointer
  5506. * @param[in] blockSize is the number of samples to process
  5507. * @param[out] *pResult is output value.
  5508. * @return none.
  5509. */
  5510. void arm_var_f32(
  5511. float32_t * pSrc,
  5512. uint32_t blockSize,
  5513. float32_t * pResult);
  5514. /**
  5515. * @brief Variance of the elements of a Q31 vector.
  5516. * @param[in] *pSrc is input pointer
  5517. * @param[in] blockSize is the number of samples to process
  5518. * @param[out] *pResult is output value.
  5519. * @return none.
  5520. */
  5521. void arm_var_q31(
  5522. q31_t * pSrc,
  5523. uint32_t blockSize,
  5524. q31_t * pResult);
  5525. /**
  5526. * @brief Variance of the elements of a Q15 vector.
  5527. * @param[in] *pSrc is input pointer
  5528. * @param[in] blockSize is the number of samples to process
  5529. * @param[out] *pResult is output value.
  5530. * @return none.
  5531. */
  5532. void arm_var_q15(
  5533. q15_t * pSrc,
  5534. uint32_t blockSize,
  5535. q15_t * pResult);
  5536. /**
  5537. * @brief Root Mean Square of the elements of a floating-point vector.
  5538. * @param[in] *pSrc is input pointer
  5539. * @param[in] blockSize is the number of samples to process
  5540. * @param[out] *pResult is output value.
  5541. * @return none.
  5542. */
  5543. void arm_rms_f32(
  5544. float32_t * pSrc,
  5545. uint32_t blockSize,
  5546. float32_t * pResult);
  5547. /**
  5548. * @brief Root Mean Square of the elements of a Q31 vector.
  5549. * @param[in] *pSrc is input pointer
  5550. * @param[in] blockSize is the number of samples to process
  5551. * @param[out] *pResult is output value.
  5552. * @return none.
  5553. */
  5554. void arm_rms_q31(
  5555. q31_t * pSrc,
  5556. uint32_t blockSize,
  5557. q31_t * pResult);
  5558. /**
  5559. * @brief Root Mean Square of the elements of a Q15 vector.
  5560. * @param[in] *pSrc is input pointer
  5561. * @param[in] blockSize is the number of samples to process
  5562. * @param[out] *pResult is output value.
  5563. * @return none.
  5564. */
  5565. void arm_rms_q15(
  5566. q15_t * pSrc,
  5567. uint32_t blockSize,
  5568. q15_t * pResult);
  5569. /**
  5570. * @brief Standard deviation of the elements of a floating-point vector.
  5571. * @param[in] *pSrc is input pointer
  5572. * @param[in] blockSize is the number of samples to process
  5573. * @param[out] *pResult is output value.
  5574. * @return none.
  5575. */
  5576. void arm_std_f32(
  5577. float32_t * pSrc,
  5578. uint32_t blockSize,
  5579. float32_t * pResult);
  5580. /**
  5581. * @brief Standard deviation of the elements of a Q31 vector.
  5582. * @param[in] *pSrc is input pointer
  5583. * @param[in] blockSize is the number of samples to process
  5584. * @param[out] *pResult is output value.
  5585. * @return none.
  5586. */
  5587. void arm_std_q31(
  5588. q31_t * pSrc,
  5589. uint32_t blockSize,
  5590. q31_t * pResult);
  5591. /**
  5592. * @brief Standard deviation of the elements of a Q15 vector.
  5593. * @param[in] *pSrc is input pointer
  5594. * @param[in] blockSize is the number of samples to process
  5595. * @param[out] *pResult is output value.
  5596. * @return none.
  5597. */
  5598. void arm_std_q15(
  5599. q15_t * pSrc,
  5600. uint32_t blockSize,
  5601. q15_t * pResult);
  5602. /**
  5603. * @brief Floating-point complex magnitude
  5604. * @param[in] *pSrc points to the complex input vector
  5605. * @param[out] *pDst points to the real output vector
  5606. * @param[in] numSamples number of complex samples in the input vector
  5607. * @return none.
  5608. */
  5609. void arm_cmplx_mag_f32(
  5610. float32_t * pSrc,
  5611. float32_t * pDst,
  5612. uint32_t numSamples);
  5613. /**
  5614. * @brief Q31 complex magnitude
  5615. * @param[in] *pSrc points to the complex input vector
  5616. * @param[out] *pDst points to the real output vector
  5617. * @param[in] numSamples number of complex samples in the input vector
  5618. * @return none.
  5619. */
  5620. void arm_cmplx_mag_q31(
  5621. q31_t * pSrc,
  5622. q31_t * pDst,
  5623. uint32_t numSamples);
  5624. /**
  5625. * @brief Q15 complex magnitude
  5626. * @param[in] *pSrc points to the complex input vector
  5627. * @param[out] *pDst points to the real output vector
  5628. * @param[in] numSamples number of complex samples in the input vector
  5629. * @return none.
  5630. */
  5631. void arm_cmplx_mag_q15(
  5632. q15_t * pSrc,
  5633. q15_t * pDst,
  5634. uint32_t numSamples);
  5635. /**
  5636. * @brief Q15 complex dot product
  5637. * @param[in] *pSrcA points to the first input vector
  5638. * @param[in] *pSrcB points to the second input vector
  5639. * @param[in] numSamples number of complex samples in each vector
  5640. * @param[out] *realResult real part of the result returned here
  5641. * @param[out] *imagResult imaginary part of the result returned here
  5642. * @return none.
  5643. */
  5644. void arm_cmplx_dot_prod_q15(
  5645. q15_t * pSrcA,
  5646. q15_t * pSrcB,
  5647. uint32_t numSamples,
  5648. q31_t * realResult,
  5649. q31_t * imagResult);
  5650. /**
  5651. * @brief Q31 complex dot product
  5652. * @param[in] *pSrcA points to the first input vector
  5653. * @param[in] *pSrcB points to the second input vector
  5654. * @param[in] numSamples number of complex samples in each vector
  5655. * @param[out] *realResult real part of the result returned here
  5656. * @param[out] *imagResult imaginary part of the result returned here
  5657. * @return none.
  5658. */
  5659. void arm_cmplx_dot_prod_q31(
  5660. q31_t * pSrcA,
  5661. q31_t * pSrcB,
  5662. uint32_t numSamples,
  5663. q63_t * realResult,
  5664. q63_t * imagResult);
  5665. /**
  5666. * @brief Floating-point complex dot product
  5667. * @param[in] *pSrcA points to the first input vector
  5668. * @param[in] *pSrcB points to the second input vector
  5669. * @param[in] numSamples number of complex samples in each vector
  5670. * @param[out] *realResult real part of the result returned here
  5671. * @param[out] *imagResult imaginary part of the result returned here
  5672. * @return none.
  5673. */
  5674. void arm_cmplx_dot_prod_f32(
  5675. float32_t * pSrcA,
  5676. float32_t * pSrcB,
  5677. uint32_t numSamples,
  5678. float32_t * realResult,
  5679. float32_t * imagResult);
  5680. /**
  5681. * @brief Q15 complex-by-real multiplication
  5682. * @param[in] *pSrcCmplx points to the complex input vector
  5683. * @param[in] *pSrcReal points to the real input vector
  5684. * @param[out] *pCmplxDst points to the complex output vector
  5685. * @param[in] numSamples number of samples in each vector
  5686. * @return none.
  5687. */
  5688. void arm_cmplx_mult_real_q15(
  5689. q15_t * pSrcCmplx,
  5690. q15_t * pSrcReal,
  5691. q15_t * pCmplxDst,
  5692. uint32_t numSamples);
  5693. /**
  5694. * @brief Q31 complex-by-real multiplication
  5695. * @param[in] *pSrcCmplx points to the complex input vector
  5696. * @param[in] *pSrcReal points to the real input vector
  5697. * @param[out] *pCmplxDst points to the complex output vector
  5698. * @param[in] numSamples number of samples in each vector
  5699. * @return none.
  5700. */
  5701. void arm_cmplx_mult_real_q31(
  5702. q31_t * pSrcCmplx,
  5703. q31_t * pSrcReal,
  5704. q31_t * pCmplxDst,
  5705. uint32_t numSamples);
  5706. /**
  5707. * @brief Floating-point complex-by-real multiplication
  5708. * @param[in] *pSrcCmplx points to the complex input vector
  5709. * @param[in] *pSrcReal points to the real input vector
  5710. * @param[out] *pCmplxDst points to the complex output vector
  5711. * @param[in] numSamples number of samples in each vector
  5712. * @return none.
  5713. */
  5714. void arm_cmplx_mult_real_f32(
  5715. float32_t * pSrcCmplx,
  5716. float32_t * pSrcReal,
  5717. float32_t * pCmplxDst,
  5718. uint32_t numSamples);
  5719. /**
  5720. * @brief Minimum value of a Q7 vector.
  5721. * @param[in] *pSrc is input pointer
  5722. * @param[in] blockSize is the number of samples to process
  5723. * @param[out] *result is output pointer
  5724. * @param[in] index is the array index of the minimum value in the input buffer.
  5725. * @return none.
  5726. */
  5727. void arm_min_q7(
  5728. q7_t * pSrc,
  5729. uint32_t blockSize,
  5730. q7_t * result,
  5731. uint32_t * index);
  5732. /**
  5733. * @brief Minimum value of a Q15 vector.
  5734. * @param[in] *pSrc is input pointer
  5735. * @param[in] blockSize is the number of samples to process
  5736. * @param[out] *pResult is output pointer
  5737. * @param[in] *pIndex is the array index of the minimum value in the input buffer.
  5738. * @return none.
  5739. */
  5740. void arm_min_q15(
  5741. q15_t * pSrc,
  5742. uint32_t blockSize,
  5743. q15_t * pResult,
  5744. uint32_t * pIndex);
  5745. /**
  5746. * @brief Minimum value of a Q31 vector.
  5747. * @param[in] *pSrc is input pointer
  5748. * @param[in] blockSize is the number of samples to process
  5749. * @param[out] *pResult is output pointer
  5750. * @param[out] *pIndex is the array index of the minimum value in the input buffer.
  5751. * @return none.
  5752. */
  5753. void arm_min_q31(
  5754. q31_t * pSrc,
  5755. uint32_t blockSize,
  5756. q31_t * pResult,
  5757. uint32_t * pIndex);
  5758. /**
  5759. * @brief Minimum value of a floating-point vector.
  5760. * @param[in] *pSrc is input pointer
  5761. * @param[in] blockSize is the number of samples to process
  5762. * @param[out] *pResult is output pointer
  5763. * @param[out] *pIndex is the array index of the minimum value in the input buffer.
  5764. * @return none.
  5765. */
  5766. void arm_min_f32(
  5767. float32_t * pSrc,
  5768. uint32_t blockSize,
  5769. float32_t * pResult,
  5770. uint32_t * pIndex);
  5771. /**
  5772. * @brief Maximum value of a Q7 vector.
  5773. * @param[in] *pSrc points to the input buffer
  5774. * @param[in] blockSize length of the input vector
  5775. * @param[out] *pResult maximum value returned here
  5776. * @param[out] *pIndex index of maximum value returned here
  5777. * @return none.
  5778. */
  5779. void arm_max_q7(
  5780. q7_t * pSrc,
  5781. uint32_t blockSize,
  5782. q7_t * pResult,
  5783. uint32_t * pIndex);
  5784. /**
  5785. * @brief Maximum value of a Q15 vector.
  5786. * @param[in] *pSrc points to the input buffer
  5787. * @param[in] blockSize length of the input vector
  5788. * @param[out] *pResult maximum value returned here
  5789. * @param[out] *pIndex index of maximum value returned here
  5790. * @return none.
  5791. */
  5792. void arm_max_q15(
  5793. q15_t * pSrc,
  5794. uint32_t blockSize,
  5795. q15_t * pResult,
  5796. uint32_t * pIndex);
  5797. /**
  5798. * @brief Maximum value of a Q31 vector.
  5799. * @param[in] *pSrc points to the input buffer
  5800. * @param[in] blockSize length of the input vector
  5801. * @param[out] *pResult maximum value returned here
  5802. * @param[out] *pIndex index of maximum value returned here
  5803. * @return none.
  5804. */
  5805. void arm_max_q31(
  5806. q31_t * pSrc,
  5807. uint32_t blockSize,
  5808. q31_t * pResult,
  5809. uint32_t * pIndex);
  5810. /**
  5811. * @brief Maximum value of a floating-point vector.
  5812. * @param[in] *pSrc points to the input buffer
  5813. * @param[in] blockSize length of the input vector
  5814. * @param[out] *pResult maximum value returned here
  5815. * @param[out] *pIndex index of maximum value returned here
  5816. * @return none.
  5817. */
  5818. void arm_max_f32(
  5819. float32_t * pSrc,
  5820. uint32_t blockSize,
  5821. float32_t * pResult,
  5822. uint32_t * pIndex);
  5823. /**
  5824. * @brief Q15 complex-by-complex multiplication
  5825. * @param[in] *pSrcA points to the first input vector
  5826. * @param[in] *pSrcB points to the second input vector
  5827. * @param[out] *pDst points to the output vector
  5828. * @param[in] numSamples number of complex samples in each vector
  5829. * @return none.
  5830. */
  5831. void arm_cmplx_mult_cmplx_q15(
  5832. q15_t * pSrcA,
  5833. q15_t * pSrcB,
  5834. q15_t * pDst,
  5835. uint32_t numSamples);
  5836. /**
  5837. * @brief Q31 complex-by-complex multiplication
  5838. * @param[in] *pSrcA points to the first input vector
  5839. * @param[in] *pSrcB points to the second input vector
  5840. * @param[out] *pDst points to the output vector
  5841. * @param[in] numSamples number of complex samples in each vector
  5842. * @return none.
  5843. */
  5844. void arm_cmplx_mult_cmplx_q31(
  5845. q31_t * pSrcA,
  5846. q31_t * pSrcB,
  5847. q31_t * pDst,
  5848. uint32_t numSamples);
  5849. /**
  5850. * @brief Floating-point complex-by-complex multiplication
  5851. * @param[in] *pSrcA points to the first input vector
  5852. * @param[in] *pSrcB points to the second input vector
  5853. * @param[out] *pDst points to the output vector
  5854. * @param[in] numSamples number of complex samples in each vector
  5855. * @return none.
  5856. */
  5857. void arm_cmplx_mult_cmplx_f32(
  5858. float32_t * pSrcA,
  5859. float32_t * pSrcB,
  5860. float32_t * pDst,
  5861. uint32_t numSamples);
  5862. /**
  5863. * @brief Converts the elements of the floating-point vector to Q31 vector.
  5864. * @param[in] *pSrc points to the floating-point input vector
  5865. * @param[out] *pDst points to the Q31 output vector
  5866. * @param[in] blockSize length of the input vector
  5867. * @return none.
  5868. */
  5869. void arm_float_to_q31(
  5870. float32_t * pSrc,
  5871. q31_t * pDst,
  5872. uint32_t blockSize);
  5873. /**
  5874. * @brief Converts the elements of the floating-point vector to Q15 vector.
  5875. * @param[in] *pSrc points to the floating-point input vector
  5876. * @param[out] *pDst points to the Q15 output vector
  5877. * @param[in] blockSize length of the input vector
  5878. * @return none
  5879. */
  5880. void arm_float_to_q15(
  5881. float32_t * pSrc,
  5882. q15_t * pDst,
  5883. uint32_t blockSize);
  5884. /**
  5885. * @brief Converts the elements of the floating-point vector to Q7 vector.
  5886. * @param[in] *pSrc points to the floating-point input vector
  5887. * @param[out] *pDst points to the Q7 output vector
  5888. * @param[in] blockSize length of the input vector
  5889. * @return none
  5890. */
  5891. void arm_float_to_q7(
  5892. float32_t * pSrc,
  5893. q7_t * pDst,
  5894. uint32_t blockSize);
  5895. /**
  5896. * @brief Converts the elements of the Q31 vector to Q15 vector.
  5897. * @param[in] *pSrc is input pointer
  5898. * @param[out] *pDst is output pointer
  5899. * @param[in] blockSize is the number of samples to process
  5900. * @return none.
  5901. */
  5902. void arm_q31_to_q15(
  5903. q31_t * pSrc,
  5904. q15_t * pDst,
  5905. uint32_t blockSize);
  5906. /**
  5907. * @brief Converts the elements of the Q31 vector to Q7 vector.
  5908. * @param[in] *pSrc is input pointer
  5909. * @param[out] *pDst is output pointer
  5910. * @param[in] blockSize is the number of samples to process
  5911. * @return none.
  5912. */
  5913. void arm_q31_to_q7(
  5914. q31_t * pSrc,
  5915. q7_t * pDst,
  5916. uint32_t blockSize);
  5917. /**
  5918. * @brief Converts the elements of the Q15 vector to floating-point vector.
  5919. * @param[in] *pSrc is input pointer
  5920. * @param[out] *pDst is output pointer
  5921. * @param[in] blockSize is the number of samples to process
  5922. * @return none.
  5923. */
  5924. void arm_q15_to_float(
  5925. q15_t * pSrc,
  5926. float32_t * pDst,
  5927. uint32_t blockSize);
  5928. /**
  5929. * @brief Converts the elements of the Q15 vector to Q31 vector.
  5930. * @param[in] *pSrc is input pointer
  5931. * @param[out] *pDst is output pointer
  5932. * @param[in] blockSize is the number of samples to process
  5933. * @return none.
  5934. */
  5935. void arm_q15_to_q31(
  5936. q15_t * pSrc,
  5937. q31_t * pDst,
  5938. uint32_t blockSize);
  5939. /**
  5940. * @brief Converts the elements of the Q15 vector to Q7 vector.
  5941. * @param[in] *pSrc is input pointer
  5942. * @param[out] *pDst is output pointer
  5943. * @param[in] blockSize is the number of samples to process
  5944. * @return none.
  5945. */
  5946. void arm_q15_to_q7(
  5947. q15_t * pSrc,
  5948. q7_t * pDst,
  5949. uint32_t blockSize);
  5950. /**
  5951. * @ingroup groupInterpolation
  5952. */
  5953. /**
  5954. * @defgroup BilinearInterpolate Bilinear Interpolation
  5955. *
  5956. * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
  5957. * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
  5958. * determines values between the grid points.
  5959. * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
  5960. * Bilinear interpolation is often used in image processing to rescale images.
  5961. * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
  5962. *
  5963. * <b>Algorithm</b>
  5964. * \par
  5965. * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
  5966. * For floating-point, the instance structure is defined as:
  5967. * <pre>
  5968. * typedef struct
  5969. * {
  5970. * uint16_t numRows;
  5971. * uint16_t numCols;
  5972. * float32_t *pData;
  5973. * } arm_bilinear_interp_instance_f32;
  5974. * </pre>
  5975. *
  5976. * \par
  5977. * where <code>numRows</code> specifies the number of rows in the table;
  5978. * <code>numCols</code> specifies the number of columns in the table;
  5979. * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
  5980. * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
  5981. * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
  5982. *
  5983. * \par
  5984. * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
  5985. * <pre>
  5986. * XF = floor(x)
  5987. * YF = floor(y)
  5988. * </pre>
  5989. * \par
  5990. * The interpolated output point is computed as:
  5991. * <pre>
  5992. * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
  5993. * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
  5994. * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
  5995. * + f(XF+1, YF+1) * (x-XF)*(y-YF)
  5996. * </pre>
  5997. * Note that the coordinates (x, y) contain integer and fractional components.
  5998. * The integer components specify which portion of the table to use while the
  5999. * fractional components control the interpolation processor.
  6000. *
  6001. * \par
  6002. * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
  6003. */
  6004. /**
  6005. * @addtogroup BilinearInterpolate
  6006. * @{
  6007. */
  6008. /**
  6009. *
  6010. * @brief Floating-point bilinear interpolation.
  6011. * @param[in,out] *S points to an instance of the interpolation structure.
  6012. * @param[in] X interpolation coordinate.
  6013. * @param[in] Y interpolation coordinate.
  6014. * @return out interpolated value.
  6015. */
  6016. static __INLINE float32_t arm_bilinear_interp_f32(
  6017. const arm_bilinear_interp_instance_f32 * S,
  6018. float32_t X,
  6019. float32_t Y)
  6020. {
  6021. float32_t out;
  6022. float32_t f00, f01, f10, f11;
  6023. float32_t *pData = S->pData;
  6024. int32_t xIndex, yIndex, index;
  6025. float32_t xdiff, ydiff;
  6026. float32_t b1, b2, b3, b4;
  6027. xIndex = (int32_t) X;
  6028. yIndex = (int32_t) Y;
  6029. /* Care taken for table outside boundary */
  6030. /* Returns zero output when values are outside table boundary */
  6031. if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0
  6032. || yIndex > (S->numCols - 1))
  6033. {
  6034. return (0);
  6035. }
  6036. /* Calculation of index for two nearest points in X-direction */
  6037. index = (xIndex - 1) + (yIndex - 1) * S->numCols;
  6038. /* Read two nearest points in X-direction */
  6039. f00 = pData[index];
  6040. f01 = pData[index + 1];
  6041. /* Calculation of index for two nearest points in Y-direction */
  6042. index = (xIndex - 1) + (yIndex) * S->numCols;
  6043. /* Read two nearest points in Y-direction */
  6044. f10 = pData[index];
  6045. f11 = pData[index + 1];
  6046. /* Calculation of intermediate values */
  6047. b1 = f00;
  6048. b2 = f01 - f00;
  6049. b3 = f10 - f00;
  6050. b4 = f00 - f01 - f10 + f11;
  6051. /* Calculation of fractional part in X */
  6052. xdiff = X - xIndex;
  6053. /* Calculation of fractional part in Y */
  6054. ydiff = Y - yIndex;
  6055. /* Calculation of bi-linear interpolated output */
  6056. out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
  6057. /* return to application */
  6058. return (out);
  6059. }
  6060. /**
  6061. *
  6062. * @brief Q31 bilinear interpolation.
  6063. * @param[in,out] *S points to an instance of the interpolation structure.
  6064. * @param[in] X interpolation coordinate in 12.20 format.
  6065. * @param[in] Y interpolation coordinate in 12.20 format.
  6066. * @return out interpolated value.
  6067. */
  6068. static __INLINE q31_t arm_bilinear_interp_q31(
  6069. arm_bilinear_interp_instance_q31 * S,
  6070. q31_t X,
  6071. q31_t Y)
  6072. {
  6073. q31_t out; /* Temporary output */
  6074. q31_t acc = 0; /* output */
  6075. q31_t xfract, yfract; /* X, Y fractional parts */
  6076. q31_t x1, x2, y1, y2; /* Nearest output values */
  6077. int32_t rI, cI; /* Row and column indices */
  6078. q31_t *pYData = S->pData; /* pointer to output table values */
  6079. uint32_t nCols = S->numCols; /* num of rows */
  6080. /* Input is in 12.20 format */
  6081. /* 12 bits for the table index */
  6082. /* Index value calculation */
  6083. rI = ((X & 0xFFF00000) >> 20u);
  6084. /* Input is in 12.20 format */
  6085. /* 12 bits for the table index */
  6086. /* Index value calculation */
  6087. cI = ((Y & 0xFFF00000) >> 20u);
  6088. /* Care taken for table outside boundary */
  6089. /* Returns zero output when values are outside table boundary */
  6090. if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
  6091. {
  6092. return (0);
  6093. }
  6094. /* 20 bits for the fractional part */
  6095. /* shift left xfract by 11 to keep 1.31 format */
  6096. xfract = (X & 0x000FFFFF) << 11u;
  6097. /* Read two nearest output values from the index */
  6098. x1 = pYData[(rI) + nCols * (cI)];
  6099. x2 = pYData[(rI) + nCols * (cI) + 1u];
  6100. /* 20 bits for the fractional part */
  6101. /* shift left yfract by 11 to keep 1.31 format */
  6102. yfract = (Y & 0x000FFFFF) << 11u;
  6103. /* Read two nearest output values from the index */
  6104. y1 = pYData[(rI) + nCols * (cI + 1)];
  6105. y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
  6106. /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
  6107. out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
  6108. acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
  6109. /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
  6110. out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
  6111. acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
  6112. /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
  6113. out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
  6114. acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
  6115. /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
  6116. out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
  6117. acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
  6118. /* Convert acc to 1.31(q31) format */
  6119. return (acc << 2u);
  6120. }
  6121. /**
  6122. * @brief Q15 bilinear interpolation.
  6123. * @param[in,out] *S points to an instance of the interpolation structure.
  6124. * @param[in] X interpolation coordinate in 12.20 format.
  6125. * @param[in] Y interpolation coordinate in 12.20 format.
  6126. * @return out interpolated value.
  6127. */
  6128. static __INLINE q15_t arm_bilinear_interp_q15(
  6129. arm_bilinear_interp_instance_q15 * S,
  6130. q31_t X,
  6131. q31_t Y)
  6132. {
  6133. q63_t acc = 0; /* output */
  6134. q31_t out; /* Temporary output */
  6135. q15_t x1, x2, y1, y2; /* Nearest output values */
  6136. q31_t xfract, yfract; /* X, Y fractional parts */
  6137. int32_t rI, cI; /* Row and column indices */
  6138. q15_t *pYData = S->pData; /* pointer to output table values */
  6139. uint32_t nCols = S->numCols; /* num of rows */
  6140. /* Input is in 12.20 format */
  6141. /* 12 bits for the table index */
  6142. /* Index value calculation */
  6143. rI = ((X & 0xFFF00000) >> 20);
  6144. /* Input is in 12.20 format */
  6145. /* 12 bits for the table index */
  6146. /* Index value calculation */
  6147. cI = ((Y & 0xFFF00000) >> 20);
  6148. /* Care taken for table outside boundary */
  6149. /* Returns zero output when values are outside table boundary */
  6150. if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
  6151. {
  6152. return (0);
  6153. }
  6154. /* 20 bits for the fractional part */
  6155. /* xfract should be in 12.20 format */
  6156. xfract = (X & 0x000FFFFF);
  6157. /* Read two nearest output values from the index */
  6158. x1 = pYData[(rI) + nCols * (cI)];
  6159. x2 = pYData[(rI) + nCols * (cI) + 1u];
  6160. /* 20 bits for the fractional part */
  6161. /* yfract should be in 12.20 format */
  6162. yfract = (Y & 0x000FFFFF);
  6163. /* Read two nearest output values from the index */
  6164. y1 = pYData[(rI) + nCols * (cI + 1)];
  6165. y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
  6166. /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
  6167. /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
  6168. /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
  6169. out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
  6170. acc = ((q63_t) out * (0xFFFFF - yfract));
  6171. /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
  6172. out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
  6173. acc += ((q63_t) out * (xfract));
  6174. /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
  6175. out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
  6176. acc += ((q63_t) out * (yfract));
  6177. /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
  6178. out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
  6179. acc += ((q63_t) out * (yfract));
  6180. /* acc is in 13.51 format and down shift acc by 36 times */
  6181. /* Convert out to 1.15 format */
  6182. return (acc >> 36);
  6183. }
  6184. /**
  6185. * @brief Q7 bilinear interpolation.
  6186. * @param[in,out] *S points to an instance of the interpolation structure.
  6187. * @param[in] X interpolation coordinate in 12.20 format.
  6188. * @param[in] Y interpolation coordinate in 12.20 format.
  6189. * @return out interpolated value.
  6190. */
  6191. static __INLINE q7_t arm_bilinear_interp_q7(
  6192. arm_bilinear_interp_instance_q7 * S,
  6193. q31_t X,
  6194. q31_t Y)
  6195. {
  6196. q63_t acc = 0; /* output */
  6197. q31_t out; /* Temporary output */
  6198. q31_t xfract, yfract; /* X, Y fractional parts */
  6199. q7_t x1, x2, y1, y2; /* Nearest output values */
  6200. int32_t rI, cI; /* Row and column indices */
  6201. q7_t *pYData = S->pData; /* pointer to output table values */
  6202. uint32_t nCols = S->numCols; /* num of rows */
  6203. /* Input is in 12.20 format */
  6204. /* 12 bits for the table index */
  6205. /* Index value calculation */
  6206. rI = ((X & 0xFFF00000) >> 20);
  6207. /* Input is in 12.20 format */
  6208. /* 12 bits for the table index */
  6209. /* Index value calculation */
  6210. cI = ((Y & 0xFFF00000) >> 20);
  6211. /* Care taken for table outside boundary */
  6212. /* Returns zero output when values are outside table boundary */
  6213. if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
  6214. {
  6215. return (0);
  6216. }
  6217. /* 20 bits for the fractional part */
  6218. /* xfract should be in 12.20 format */
  6219. xfract = (X & 0x000FFFFF);
  6220. /* Read two nearest output values from the index */
  6221. x1 = pYData[(rI) + nCols * (cI)];
  6222. x2 = pYData[(rI) + nCols * (cI) + 1u];
  6223. /* 20 bits for the fractional part */
  6224. /* yfract should be in 12.20 format */
  6225. yfract = (Y & 0x000FFFFF);
  6226. /* Read two nearest output values from the index */
  6227. y1 = pYData[(rI) + nCols * (cI + 1)];
  6228. y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
  6229. /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
  6230. out = ((x1 * (0xFFFFF - xfract)));
  6231. acc = (((q63_t) out * (0xFFFFF - yfract)));
  6232. /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
  6233. out = ((x2 * (0xFFFFF - yfract)));
  6234. acc += (((q63_t) out * (xfract)));
  6235. /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
  6236. out = ((y1 * (0xFFFFF - xfract)));
  6237. acc += (((q63_t) out * (yfract)));
  6238. /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
  6239. out = ((y2 * (yfract)));
  6240. acc += (((q63_t) out * (xfract)));
  6241. /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
  6242. return (acc >> 40);
  6243. }
  6244. /**
  6245. * @} end of BilinearInterpolate group
  6246. */
  6247. //SMMLAR
  6248. #define multAcc_32x32_keep32_R(a, x, y) \
  6249. a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
  6250. //SMMLSR
  6251. #define multSub_32x32_keep32_R(a, x, y) \
  6252. a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
  6253. //SMMULR
  6254. #define mult_32x32_keep32_R(a, x, y) \
  6255. a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
  6256. //SMMLA
  6257. #define multAcc_32x32_keep32(a, x, y) \
  6258. a += (q31_t) (((q63_t) x * y) >> 32)
  6259. //SMMLS
  6260. #define multSub_32x32_keep32(a, x, y) \
  6261. a -= (q31_t) (((q63_t) x * y) >> 32)
  6262. //SMMUL
  6263. #define mult_32x32_keep32(a, x, y) \
  6264. a = (q31_t) (((q63_t) x * y ) >> 32)
  6265. #if defined ( __CC_ARM ) //Keil
  6266. //Enter low optimization region - place directly above function definition
  6267. #ifdef ARM_MATH_CM4
  6268. #define LOW_OPTIMIZATION_ENTER \
  6269. _Pragma ("push") \
  6270. _Pragma ("O1")
  6271. #else
  6272. #define LOW_OPTIMIZATION_ENTER
  6273. #endif
  6274. //Exit low optimization region - place directly after end of function definition
  6275. #ifdef ARM_MATH_CM4
  6276. #define LOW_OPTIMIZATION_EXIT \
  6277. _Pragma ("pop")
  6278. #else
  6279. #define LOW_OPTIMIZATION_EXIT
  6280. #endif
  6281. //Enter low optimization region - place directly above function definition
  6282. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6283. //Exit low optimization region - place directly after end of function definition
  6284. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6285. #elif defined(__ICCARM__) //IAR
  6286. //Enter low optimization region - place directly above function definition
  6287. #ifdef ARM_MATH_CM4
  6288. #define LOW_OPTIMIZATION_ENTER \
  6289. _Pragma ("optimize=low")
  6290. #else
  6291. #define LOW_OPTIMIZATION_ENTER
  6292. #endif
  6293. //Exit low optimization region - place directly after end of function definition
  6294. #define LOW_OPTIMIZATION_EXIT
  6295. //Enter low optimization region - place directly above function definition
  6296. #ifdef ARM_MATH_CM4
  6297. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
  6298. _Pragma ("optimize=low")
  6299. #else
  6300. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6301. #endif
  6302. //Exit low optimization region - place directly after end of function definition
  6303. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6304. #elif defined(__GNUC__)
  6305. #define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
  6306. #define LOW_OPTIMIZATION_EXIT
  6307. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6308. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6309. #elif defined(__CSMC__) // Cosmic
  6310. #define LOW_OPTIMIZATION_ENTER
  6311. #define LOW_OPTIMIZATION_EXIT
  6312. #define IAR_ONLY_LOW_OPTIMIZATION_ENTER
  6313. #define IAR_ONLY_LOW_OPTIMIZATION_EXIT
  6314. #endif
  6315. #ifdef __cplusplus
  6316. }
  6317. #endif
  6318. #endif /* _ARM_MATH_H */
  6319. /**
  6320. *
  6321. * End of file.
  6322. */