A bundled STM32F10x Std Periph and CMSIS library
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 
 
 
 

287 lignes
10 KiB

  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
  3. *
  4. * $Date: 12. March 2014
  5. * $Revision: V1.4.4
  6. *
  7. * Project: CMSIS DSP Library
  8. * Title: arm_biquad_cascade_df1_fast_q15.c
  9. *
  10. * Description: Fast processing function for the
  11. * Q15 Biquad cascade filter.
  12. *
  13. * Target Processor: Cortex-M4/Cortex-M3
  14. *
  15. * Redistribution and use in source and binary forms, with or without
  16. * modification, are permitted provided that the following conditions
  17. * are met:
  18. * - Redistributions of source code must retain the above copyright
  19. * notice, this list of conditions and the following disclaimer.
  20. * - Redistributions in binary form must reproduce the above copyright
  21. * notice, this list of conditions and the following disclaimer in
  22. * the documentation and/or other materials provided with the
  23. * distribution.
  24. * - Neither the name of ARM LIMITED nor the names of its contributors
  25. * may be used to endorse or promote products derived from this
  26. * software without specific prior written permission.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  29. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  30. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  31. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  32. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  33. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  34. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  35. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  36. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  37. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  38. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  39. * POSSIBILITY OF SUCH DAMAGE.
  40. * -------------------------------------------------------------------- */
  41. #include "arm_math.h"
  42. /**
  43. * @ingroup groupFilters
  44. */
  45. /**
  46. * @addtogroup BiquadCascadeDF1
  47. * @{
  48. */
  49. /**
  50. * @details
  51. * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
  52. * @param[in] *pSrc points to the block of input data.
  53. * @param[out] *pDst points to the block of output data.
  54. * @param[in] blockSize number of samples to process per call.
  55. * @return none.
  56. *
  57. * <b>Scaling and Overflow Behavior:</b>
  58. * \par
  59. * This fast version uses a 32-bit accumulator with 2.30 format.
  60. * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.
  61. * Thus, if the accumulator result overflows it wraps around and distorts the result.
  62. * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).
  63. * The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.
  64. *
  65. * \par
  66. * Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure.
  67. * Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.
  68. *
  69. */
  70. void arm_biquad_cascade_df1_fast_q15(
  71. const arm_biquad_casd_df1_inst_q15 * S,
  72. q15_t * pSrc,
  73. q15_t * pDst,
  74. uint32_t blockSize)
  75. {
  76. q15_t *pIn = pSrc; /* Source pointer */
  77. q15_t *pOut = pDst; /* Destination pointer */
  78. q31_t in; /* Temporary variable to hold input value */
  79. q31_t out; /* Temporary variable to hold output value */
  80. q31_t b0; /* Temporary variable to hold bo value */
  81. q31_t b1, a1; /* Filter coefficients */
  82. q31_t state_in, state_out; /* Filter state variables */
  83. q31_t acc; /* Accumulator */
  84. int32_t shift = (int32_t) (15 - S->postShift); /* Post shift */
  85. q15_t *pState = S->pState; /* State pointer */
  86. q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
  87. uint32_t sample, stage = S->numStages; /* Stage loop counter */
  88. do
  89. {
  90. /* Read the b0 and 0 coefficients using SIMD */
  91. b0 = *__SIMD32(pCoeffs)++;
  92. /* Read the b1 and b2 coefficients using SIMD */
  93. b1 = *__SIMD32(pCoeffs)++;
  94. /* Read the a1 and a2 coefficients using SIMD */
  95. a1 = *__SIMD32(pCoeffs)++;
  96. /* Read the input state values from the state buffer: x[n-1], x[n-2] */
  97. state_in = *__SIMD32(pState)++;
  98. /* Read the output state values from the state buffer: y[n-1], y[n-2] */
  99. state_out = *__SIMD32(pState)--;
  100. /* Apply loop unrolling and compute 2 output values simultaneously. */
  101. /* The variable acc hold output values that are being computed:
  102. *
  103. * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  104. * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  105. */
  106. sample = blockSize >> 1u;
  107. /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
  108. ** a second loop below computes the remaining 1 sample. */
  109. while(sample > 0u)
  110. {
  111. /* Read the input */
  112. in = *__SIMD32(pIn)++;
  113. /* out = b0 * x[n] + 0 * 0 */
  114. out = __SMUAD(b0, in);
  115. /* acc = b1 * x[n-1] + acc += b2 * x[n-2] + out */
  116. acc = __SMLAD(b1, state_in, out);
  117. /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
  118. acc = __SMLAD(a1, state_out, acc);
  119. /* The result is converted from 3.29 to 1.31 and then saturation is applied */
  120. out = __SSAT((acc >> shift), 16);
  121. /* Every time after the output is computed state should be updated. */
  122. /* The states should be updated as: */
  123. /* Xn2 = Xn1 */
  124. /* Xn1 = Xn */
  125. /* Yn2 = Yn1 */
  126. /* Yn1 = acc */
  127. /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
  128. /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
  129. #ifndef ARM_MATH_BIG_ENDIAN
  130. state_in = __PKHBT(in, state_in, 16);
  131. state_out = __PKHBT(out, state_out, 16);
  132. #else
  133. state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
  134. state_out = __PKHBT(state_out >> 16, (out), 16);
  135. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  136. /* out = b0 * x[n] + 0 * 0 */
  137. out = __SMUADX(b0, in);
  138. /* acc0 = b1 * x[n-1] , acc0 += b2 * x[n-2] + out */
  139. acc = __SMLAD(b1, state_in, out);
  140. /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
  141. acc = __SMLAD(a1, state_out, acc);
  142. /* The result is converted from 3.29 to 1.31 and then saturation is applied */
  143. out = __SSAT((acc >> shift), 16);
  144. /* Store the output in the destination buffer. */
  145. #ifndef ARM_MATH_BIG_ENDIAN
  146. *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
  147. #else
  148. *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
  149. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  150. /* Every time after the output is computed state should be updated. */
  151. /* The states should be updated as: */
  152. /* Xn2 = Xn1 */
  153. /* Xn1 = Xn */
  154. /* Yn2 = Yn1 */
  155. /* Yn1 = acc */
  156. /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
  157. /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
  158. #ifndef ARM_MATH_BIG_ENDIAN
  159. state_in = __PKHBT(in >> 16, state_in, 16);
  160. state_out = __PKHBT(out, state_out, 16);
  161. #else
  162. state_in = __PKHBT(state_in >> 16, in, 16);
  163. state_out = __PKHBT(state_out >> 16, out, 16);
  164. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  165. /* Decrement the loop counter */
  166. sample--;
  167. }
  168. /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
  169. ** No loop unrolling is used. */
  170. if((blockSize & 0x1u) != 0u)
  171. {
  172. /* Read the input */
  173. in = *pIn++;
  174. /* out = b0 * x[n] + 0 * 0 */
  175. #ifndef ARM_MATH_BIG_ENDIAN
  176. out = __SMUAD(b0, in);
  177. #else
  178. out = __SMUADX(b0, in);
  179. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  180. /* acc = b1 * x[n-1], acc += b2 * x[n-2] + out */
  181. acc = __SMLAD(b1, state_in, out);
  182. /* acc += a1 * y[n-1] + acc += a2 * y[n-2] */
  183. acc = __SMLAD(a1, state_out, acc);
  184. /* The result is converted from 3.29 to 1.31 and then saturation is applied */
  185. out = __SSAT((acc >> shift), 16);
  186. /* Store the output in the destination buffer. */
  187. *pOut++ = (q15_t) out;
  188. /* Every time after the output is computed state should be updated. */
  189. /* The states should be updated as: */
  190. /* Xn2 = Xn1 */
  191. /* Xn1 = Xn */
  192. /* Yn2 = Yn1 */
  193. /* Yn1 = acc */
  194. /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
  195. /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
  196. #ifndef ARM_MATH_BIG_ENDIAN
  197. state_in = __PKHBT(in, state_in, 16);
  198. state_out = __PKHBT(out, state_out, 16);
  199. #else
  200. state_in = __PKHBT(state_in >> 16, in, 16);
  201. state_out = __PKHBT(state_out >> 16, out, 16);
  202. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  203. }
  204. /* The first stage goes from the input buffer to the output buffer. */
  205. /* Subsequent (numStages - 1) occur in-place in the output buffer */
  206. pIn = pDst;
  207. /* Reset the output pointer */
  208. pOut = pDst;
  209. /* Store the updated state variables back into the state array */
  210. *__SIMD32(pState)++ = state_in;
  211. *__SIMD32(pState)++ = state_out;
  212. /* Decrement the loop counter */
  213. stage--;
  214. } while(stage > 0u);
  215. }
  216. /**
  217. * @} end of BiquadCascadeDF1 group
  218. */