A bundled STM32F10x Std Periph and CMSIS library
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 
 
 
 

562 lignes
21 KiB

  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
  3. *
  4. * $Date: 12. March 2014
  5. * $Revision: V1.4.4
  6. *
  7. * Project: CMSIS DSP Library
  8. * Title: arm_biquad_cascade_df1_32x64_q31.c
  9. *
  10. * Description: High precision Q31 Biquad cascade filter processing function
  11. *
  12. * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
  13. *
  14. * Redistribution and use in source and binary forms, with or without
  15. * modification, are permitted provided that the following conditions
  16. * are met:
  17. * - Redistributions of source code must retain the above copyright
  18. * notice, this list of conditions and the following disclaimer.
  19. * - Redistributions in binary form must reproduce the above copyright
  20. * notice, this list of conditions and the following disclaimer in
  21. * the documentation and/or other materials provided with the
  22. * distribution.
  23. * - Neither the name of ARM LIMITED nor the names of its contributors
  24. * may be used to endorse or promote products derived from this
  25. * software without specific prior written permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  30. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  31. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  32. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  33. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  34. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  35. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  36. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  37. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  38. * POSSIBILITY OF SUCH DAMAGE.
  39. * -------------------------------------------------------------------- */
  40. #include "arm_math.h"
  41. /**
  42. * @ingroup groupFilters
  43. */
  44. /**
  45. * @defgroup BiquadCascadeDF1_32x64 High Precision Q31 Biquad Cascade Filter
  46. *
  47. * This function implements a high precision Biquad cascade filter which operates on
  48. * Q31 data values. The filter coefficients are in 1.31 format and the state variables
  49. * are in 1.63 format. The double precision state variables reduce quantization noise
  50. * in the filter and provide a cleaner output.
  51. * These filters are particularly useful when implementing filters in which the
  52. * singularities are close to the unit circle. This is common for low pass or high
  53. * pass filters with very low cutoff frequencies.
  54. *
  55. * The function operates on blocks of input and output data
  56. * and each call to the function processes <code>blockSize</code> samples through
  57. * the filter. <code>pSrc</code> and <code>pDst</code> points to input and output arrays
  58. * containing <code>blockSize</code> Q31 values.
  59. *
  60. * \par Algorithm
  61. * Each Biquad stage implements a second order filter using the difference equation:
  62. * <pre>
  63. * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  64. * </pre>
  65. * A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage.
  66. * \image html Biquad.gif "Single Biquad filter stage"
  67. * Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.
  68. * Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.
  69. * Pay careful attention to the sign of the feedback coefficients.
  70. * Some design tools use the difference equation
  71. * <pre>
  72. * y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2]
  73. * </pre>
  74. * In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.
  75. *
  76. * \par
  77. * Higher order filters are realized as a cascade of second order sections.
  78. * <code>numStages</code> refers to the number of second order stages used.
  79. * For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.
  80. * \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages"
  81. * A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).
  82. *
  83. * \par
  84. * The <code>pState</code> points to state variables array .
  85. * Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code> and each state variable in 1.63 format to improve precision.
  86. * The state variables are arranged in the array as:
  87. * <pre>
  88. * {x[n-1], x[n-2], y[n-1], y[n-2]}
  89. * </pre>
  90. *
  91. * \par
  92. * The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on.
  93. * The state array has a total length of <code>4*numStages</code> values of data in 1.63 format.
  94. * The state variables are updated after each block of data is processed; the coefficients are untouched.
  95. *
  96. * \par Instance Structure
  97. * The coefficients and state variables for a filter are stored together in an instance data structure.
  98. * A separate instance structure must be defined for each filter.
  99. * Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
  100. *
  101. * \par Init Function
  102. * There is also an associated initialization function which performs the following operations:
  103. * - Sets the values of the internal structure fields.
  104. * - Zeros out the values in the state buffer.
  105. * To do this manually without calling the init function, assign the follow subfields of the instance structure:
  106. * numStages, pCoeffs, postShift, pState. Also set all of the values in pState to zero.
  107. *
  108. * \par
  109. * Use of the initialization function is optional.
  110. * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
  111. * To place an instance structure into a const data section, the instance structure must be manually initialized.
  112. * Set the values in the state buffer to zeros before static initialization.
  113. * For example, to statically initialize the filter instance structure use
  114. * <pre>
  115. * arm_biquad_cas_df1_32x64_ins_q31 S1 = {numStages, pState, pCoeffs, postShift};
  116. * </pre>
  117. * where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer;
  118. * <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied which is described in detail below.
  119. * \par Fixed-Point Behavior
  120. * Care must be taken while using Biquad Cascade 32x64 filter function.
  121. * Following issues must be considered:
  122. * - Scaling of coefficients
  123. * - Filter gain
  124. * - Overflow and saturation
  125. *
  126. * \par
  127. * Filter coefficients are represented as fractional values and
  128. * restricted to lie in the range <code>[-1 +1)</code>.
  129. * The processing function has an additional scaling parameter <code>postShift</code>
  130. * which allows the filter coefficients to exceed the range <code>[+1 -1)</code>.
  131. * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.
  132. * \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator"
  133. * This essentially scales the filter coefficients by <code>2^postShift</code>.
  134. * For example, to realize the coefficients
  135. * <pre>
  136. * {1.5, -0.8, 1.2, 1.6, -0.9}
  137. * </pre>
  138. * set the Coefficient array to:
  139. * <pre>
  140. * {0.75, -0.4, 0.6, 0.8, -0.45}
  141. * </pre>
  142. * and set <code>postShift=1</code>
  143. *
  144. * \par
  145. * The second thing to keep in mind is the gain through the filter.
  146. * The frequency response of a Biquad filter is a function of its coefficients.
  147. * It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies.
  148. * This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter.
  149. * To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed.
  150. *
  151. * \par
  152. * The third item to consider is the overflow and saturation behavior of the fixed-point Q31 version.
  153. * This is described in the function specific documentation below.
  154. */
  155. /**
  156. * @addtogroup BiquadCascadeDF1_32x64
  157. * @{
  158. */
  159. /**
  160. * @details
  161. * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter.
  162. * @param[in] *pSrc points to the block of input data.
  163. * @param[out] *pDst points to the block of output data.
  164. * @param[in] blockSize number of samples to process.
  165. * @return none.
  166. *
  167. * \par
  168. * The function is implemented using an internal 64-bit accumulator.
  169. * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
  170. * Thus, if the accumulator result overflows it wraps around rather than clip.
  171. * In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25).
  172. * After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to
  173. * 1.31 format by discarding the low 32 bits.
  174. *
  175. * \par
  176. * Two related functions are provided in the CMSIS DSP library.
  177. * <code>arm_biquad_cascade_df1_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q63 accumulator.
  178. * <code>arm_biquad_cascade_df1_fast_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q31 accumulator.
  179. */
  180. void arm_biquad_cas_df1_32x64_q31(
  181. const arm_biquad_cas_df1_32x64_ins_q31 * S,
  182. q31_t * pSrc,
  183. q31_t * pDst,
  184. uint32_t blockSize)
  185. {
  186. q31_t *pIn = pSrc; /* input pointer initialization */
  187. q31_t *pOut = pDst; /* output pointer initialization */
  188. q63_t *pState = S->pState; /* state pointer initialization */
  189. q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */
  190. q63_t acc; /* accumulator */
  191. q31_t Xn1, Xn2; /* Input Filter state variables */
  192. q63_t Yn1, Yn2; /* Output Filter state variables */
  193. q31_t b0, b1, b2, a1, a2; /* Filter coefficients */
  194. q31_t Xn; /* temporary input */
  195. int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */
  196. uint32_t sample, stage = S->numStages; /* loop counters */
  197. q31_t acc_l, acc_h; /* temporary output */
  198. uint32_t uShift = ((uint32_t) S->postShift + 1u);
  199. uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */
  200. #ifndef ARM_MATH_CM0_FAMILY
  201. /* Run the below code for Cortex-M4 and Cortex-M3 */
  202. do
  203. {
  204. /* Reading the coefficients */
  205. b0 = *pCoeffs++;
  206. b1 = *pCoeffs++;
  207. b2 = *pCoeffs++;
  208. a1 = *pCoeffs++;
  209. a2 = *pCoeffs++;
  210. /* Reading the state values */
  211. Xn1 = (q31_t) (pState[0]);
  212. Xn2 = (q31_t) (pState[1]);
  213. Yn1 = pState[2];
  214. Yn2 = pState[3];
  215. /* Apply loop unrolling and compute 4 output values simultaneously. */
  216. /* The variable acc hold output value that is being computed and
  217. * stored in the destination buffer
  218. * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  219. */
  220. sample = blockSize >> 2u;
  221. /* First part of the processing with loop unrolling. Compute 4 outputs at a time.
  222. ** a second loop below computes the remaining 1 to 3 samples. */
  223. while(sample > 0u)
  224. {
  225. /* Read the input */
  226. Xn = *pIn++;
  227. /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
  228. /* acc = b0 * x[n] */
  229. acc = (q63_t) Xn *b0;
  230. /* acc += b1 * x[n-1] */
  231. acc += (q63_t) Xn1 *b1;
  232. /* acc += b[2] * x[n-2] */
  233. acc += (q63_t) Xn2 *b2;
  234. /* acc += a1 * y[n-1] */
  235. acc += mult32x64(Yn1, a1);
  236. /* acc += a2 * y[n-2] */
  237. acc += mult32x64(Yn2, a2);
  238. /* The result is converted to 1.63 , Yn2 variable is reused */
  239. Yn2 = acc << shift;
  240. /* Calc lower part of acc */
  241. acc_l = acc & 0xffffffff;
  242. /* Calc upper part of acc */
  243. acc_h = (acc >> 32) & 0xffffffff;
  244. /* Apply shift for lower part of acc and upper part of acc */
  245. acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
  246. /* Store the output in the destination buffer in 1.31 format. */
  247. *pOut = acc_h;
  248. /* Read the second input into Xn2, to reuse the value */
  249. Xn2 = *pIn++;
  250. /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
  251. /* acc += b1 * x[n-1] */
  252. acc = (q63_t) Xn *b1;
  253. /* acc = b0 * x[n] */
  254. acc += (q63_t) Xn2 *b0;
  255. /* acc += b[2] * x[n-2] */
  256. acc += (q63_t) Xn1 *b2;
  257. /* acc += a1 * y[n-1] */
  258. acc += mult32x64(Yn2, a1);
  259. /* acc += a2 * y[n-2] */
  260. acc += mult32x64(Yn1, a2);
  261. /* The result is converted to 1.63, Yn1 variable is reused */
  262. Yn1 = acc << shift;
  263. /* Calc lower part of acc */
  264. acc_l = acc & 0xffffffff;
  265. /* Calc upper part of acc */
  266. acc_h = (acc >> 32) & 0xffffffff;
  267. /* Apply shift for lower part of acc and upper part of acc */
  268. acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
  269. /* Read the third input into Xn1, to reuse the value */
  270. Xn1 = *pIn++;
  271. /* The result is converted to 1.31 */
  272. /* Store the output in the destination buffer. */
  273. *(pOut + 1u) = acc_h;
  274. /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
  275. /* acc = b0 * x[n] */
  276. acc = (q63_t) Xn1 *b0;
  277. /* acc += b1 * x[n-1] */
  278. acc += (q63_t) Xn2 *b1;
  279. /* acc += b[2] * x[n-2] */
  280. acc += (q63_t) Xn *b2;
  281. /* acc += a1 * y[n-1] */
  282. acc += mult32x64(Yn1, a1);
  283. /* acc += a2 * y[n-2] */
  284. acc += mult32x64(Yn2, a2);
  285. /* The result is converted to 1.63, Yn2 variable is reused */
  286. Yn2 = acc << shift;
  287. /* Calc lower part of acc */
  288. acc_l = acc & 0xffffffff;
  289. /* Calc upper part of acc */
  290. acc_h = (acc >> 32) & 0xffffffff;
  291. /* Apply shift for lower part of acc and upper part of acc */
  292. acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
  293. /* Store the output in the destination buffer in 1.31 format. */
  294. *(pOut + 2u) = acc_h;
  295. /* Read the fourth input into Xn, to reuse the value */
  296. Xn = *pIn++;
  297. /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
  298. /* acc = b0 * x[n] */
  299. acc = (q63_t) Xn *b0;
  300. /* acc += b1 * x[n-1] */
  301. acc += (q63_t) Xn1 *b1;
  302. /* acc += b[2] * x[n-2] */
  303. acc += (q63_t) Xn2 *b2;
  304. /* acc += a1 * y[n-1] */
  305. acc += mult32x64(Yn2, a1);
  306. /* acc += a2 * y[n-2] */
  307. acc += mult32x64(Yn1, a2);
  308. /* The result is converted to 1.63, Yn1 variable is reused */
  309. Yn1 = acc << shift;
  310. /* Calc lower part of acc */
  311. acc_l = acc & 0xffffffff;
  312. /* Calc upper part of acc */
  313. acc_h = (acc >> 32) & 0xffffffff;
  314. /* Apply shift for lower part of acc and upper part of acc */
  315. acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
  316. /* Store the output in the destination buffer in 1.31 format. */
  317. *(pOut + 3u) = acc_h;
  318. /* Every time after the output is computed state should be updated. */
  319. /* The states should be updated as: */
  320. /* Xn2 = Xn1 */
  321. /* Xn1 = Xn */
  322. /* Yn2 = Yn1 */
  323. /* Yn1 = acc */
  324. Xn2 = Xn1;
  325. Xn1 = Xn;
  326. /* update output pointer */
  327. pOut += 4u;
  328. /* decrement the loop counter */
  329. sample--;
  330. }
  331. /* If the blockSize is not a multiple of 4, compute any remaining output samples here.
  332. ** No loop unrolling is used. */
  333. sample = (blockSize & 0x3u);
  334. while(sample > 0u)
  335. {
  336. /* Read the input */
  337. Xn = *pIn++;
  338. /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
  339. /* acc = b0 * x[n] */
  340. acc = (q63_t) Xn *b0;
  341. /* acc += b1 * x[n-1] */
  342. acc += (q63_t) Xn1 *b1;
  343. /* acc += b[2] * x[n-2] */
  344. acc += (q63_t) Xn2 *b2;
  345. /* acc += a1 * y[n-1] */
  346. acc += mult32x64(Yn1, a1);
  347. /* acc += a2 * y[n-2] */
  348. acc += mult32x64(Yn2, a2);
  349. /* Every time after the output is computed state should be updated. */
  350. /* The states should be updated as: */
  351. /* Xn2 = Xn1 */
  352. /* Xn1 = Xn */
  353. /* Yn2 = Yn1 */
  354. /* Yn1 = acc */
  355. Xn2 = Xn1;
  356. Xn1 = Xn;
  357. Yn2 = Yn1;
  358. /* The result is converted to 1.63, Yn1 variable is reused */
  359. Yn1 = acc << shift;
  360. /* Calc lower part of acc */
  361. acc_l = acc & 0xffffffff;
  362. /* Calc upper part of acc */
  363. acc_h = (acc >> 32) & 0xffffffff;
  364. /* Apply shift for lower part of acc and upper part of acc */
  365. acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
  366. /* Store the output in the destination buffer in 1.31 format. */
  367. *pOut++ = acc_h;
  368. //Yn1 = acc << shift;
  369. /* Store the output in the destination buffer in 1.31 format. */
  370. // *pOut++ = (q31_t) (acc >> (32 - shift));
  371. /* decrement the loop counter */
  372. sample--;
  373. }
  374. /* The first stage output is given as input to the second stage. */
  375. pIn = pDst;
  376. /* Reset to destination buffer working pointer */
  377. pOut = pDst;
  378. /* Store the updated state variables back into the pState array */
  379. /* Store the updated state variables back into the pState array */
  380. *pState++ = (q63_t) Xn1;
  381. *pState++ = (q63_t) Xn2;
  382. *pState++ = Yn1;
  383. *pState++ = Yn2;
  384. } while(--stage);
  385. #else
  386. /* Run the below code for Cortex-M0 */
  387. do
  388. {
  389. /* Reading the coefficients */
  390. b0 = *pCoeffs++;
  391. b1 = *pCoeffs++;
  392. b2 = *pCoeffs++;
  393. a1 = *pCoeffs++;
  394. a2 = *pCoeffs++;
  395. /* Reading the state values */
  396. Xn1 = pState[0];
  397. Xn2 = pState[1];
  398. Yn1 = pState[2];
  399. Yn2 = pState[3];
  400. /* The variable acc hold output value that is being computed and
  401. * stored in the destination buffer
  402. * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  403. */
  404. sample = blockSize;
  405. while(sample > 0u)
  406. {
  407. /* Read the input */
  408. Xn = *pIn++;
  409. /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
  410. /* acc = b0 * x[n] */
  411. acc = (q63_t) Xn *b0;
  412. /* acc += b1 * x[n-1] */
  413. acc += (q63_t) Xn1 *b1;
  414. /* acc += b[2] * x[n-2] */
  415. acc += (q63_t) Xn2 *b2;
  416. /* acc += a1 * y[n-1] */
  417. acc += mult32x64(Yn1, a1);
  418. /* acc += a2 * y[n-2] */
  419. acc += mult32x64(Yn2, a2);
  420. /* Every time after the output is computed state should be updated. */
  421. /* The states should be updated as: */
  422. /* Xn2 = Xn1 */
  423. /* Xn1 = Xn */
  424. /* Yn2 = Yn1 */
  425. /* Yn1 = acc */
  426. Xn2 = Xn1;
  427. Xn1 = Xn;
  428. Yn2 = Yn1;
  429. /* The result is converted to 1.63, Yn1 variable is reused */
  430. Yn1 = acc << shift;
  431. /* Calc lower part of acc */
  432. acc_l = acc & 0xffffffff;
  433. /* Calc upper part of acc */
  434. acc_h = (acc >> 32) & 0xffffffff;
  435. /* Apply shift for lower part of acc and upper part of acc */
  436. acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift;
  437. /* Store the output in the destination buffer in 1.31 format. */
  438. *pOut++ = acc_h;
  439. //Yn1 = acc << shift;
  440. /* Store the output in the destination buffer in 1.31 format. */
  441. //*pOut++ = (q31_t) (acc >> (32 - shift));
  442. /* decrement the loop counter */
  443. sample--;
  444. }
  445. /* The first stage output is given as input to the second stage. */
  446. pIn = pDst;
  447. /* Reset to destination buffer working pointer */
  448. pOut = pDst;
  449. /* Store the updated state variables back into the pState array */
  450. *pState++ = (q63_t) Xn1;
  451. *pState++ = (q63_t) Xn2;
  452. *pState++ = Yn1;
  453. *pState++ = Yn2;
  454. } while(--stage);
  455. #endif /* #ifndef ARM_MATH_CM0_FAMILY */
  456. }
  457. /**
  458. * @} end of BiquadCascadeDF1_32x64 group
  459. */