A bundled STM32F10x Std Periph and CMSIS library
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

arm_biquad_cascade_df1_q15.c 14 KiB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411
  1. /* ----------------------------------------------------------------------
  2. * Copyright (C) 2010-2014 ARM Limited. All rights reserved.
  3. *
  4. * $Date: 12. March 2014
  5. * $Revision: V1.4.4
  6. *
  7. * Project: CMSIS DSP Library
  8. * Title: arm_biquad_cascade_df1_q15.c
  9. *
  10. * Description: Processing function for the
  11. * Q15 Biquad cascade DirectFormI(DF1) filter.
  12. *
  13. * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
  14. *
  15. * Redistribution and use in source and binary forms, with or without
  16. * modification, are permitted provided that the following conditions
  17. * are met:
  18. * - Redistributions of source code must retain the above copyright
  19. * notice, this list of conditions and the following disclaimer.
  20. * - Redistributions in binary form must reproduce the above copyright
  21. * notice, this list of conditions and the following disclaimer in
  22. * the documentation and/or other materials provided with the
  23. * distribution.
  24. * - Neither the name of ARM LIMITED nor the names of its contributors
  25. * may be used to endorse or promote products derived from this
  26. * software without specific prior written permission.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  29. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  30. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  31. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  32. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  33. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  34. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  35. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  36. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  37. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  38. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  39. * POSSIBILITY OF SUCH DAMAGE.
  40. * -------------------------------------------------------------------- */
  41. #include "arm_math.h"
  42. /**
  43. * @ingroup groupFilters
  44. */
  45. /**
  46. * @addtogroup BiquadCascadeDF1
  47. * @{
  48. */
  49. /**
  50. * @brief Processing function for the Q15 Biquad cascade filter.
  51. * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
  52. * @param[in] *pSrc points to the block of input data.
  53. * @param[out] *pDst points to the location where the output result is written.
  54. * @param[in] blockSize number of samples to process per call.
  55. * @return none.
  56. *
  57. *
  58. * <b>Scaling and Overflow Behavior:</b>
  59. * \par
  60. * The function is implemented using a 64-bit internal accumulator.
  61. * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
  62. * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
  63. * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
  64. * The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits.
  65. * Finally, the result is saturated to 1.15 format.
  66. *
  67. * \par
  68. * Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
  69. */
  70. void arm_biquad_cascade_df1_q15(
  71. const arm_biquad_casd_df1_inst_q15 * S,
  72. q15_t * pSrc,
  73. q15_t * pDst,
  74. uint32_t blockSize)
  75. {
  76. #ifndef ARM_MATH_CM0_FAMILY
  77. /* Run the below code for Cortex-M4 and Cortex-M3 */
  78. q15_t *pIn = pSrc; /* Source pointer */
  79. q15_t *pOut = pDst; /* Destination pointer */
  80. q31_t in; /* Temporary variable to hold input value */
  81. q31_t out; /* Temporary variable to hold output value */
  82. q31_t b0; /* Temporary variable to hold bo value */
  83. q31_t b1, a1; /* Filter coefficients */
  84. q31_t state_in, state_out; /* Filter state variables */
  85. q31_t acc_l, acc_h;
  86. q63_t acc; /* Accumulator */
  87. int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */
  88. q15_t *pState = S->pState; /* State pointer */
  89. q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
  90. uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
  91. int32_t uShift = (32 - lShift);
  92. do
  93. {
  94. /* Read the b0 and 0 coefficients using SIMD */
  95. b0 = *__SIMD32(pCoeffs)++;
  96. /* Read the b1 and b2 coefficients using SIMD */
  97. b1 = *__SIMD32(pCoeffs)++;
  98. /* Read the a1 and a2 coefficients using SIMD */
  99. a1 = *__SIMD32(pCoeffs)++;
  100. /* Read the input state values from the state buffer: x[n-1], x[n-2] */
  101. state_in = *__SIMD32(pState)++;
  102. /* Read the output state values from the state buffer: y[n-1], y[n-2] */
  103. state_out = *__SIMD32(pState)--;
  104. /* Apply loop unrolling and compute 2 output values simultaneously. */
  105. /* The variable acc hold output values that are being computed:
  106. *
  107. * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  108. * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  109. */
  110. sample = blockSize >> 1u;
  111. /* First part of the processing with loop unrolling. Compute 2 outputs at a time.
  112. ** a second loop below computes the remaining 1 sample. */
  113. while(sample > 0u)
  114. {
  115. /* Read the input */
  116. in = *__SIMD32(pIn)++;
  117. /* out = b0 * x[n] + 0 * 0 */
  118. out = __SMUAD(b0, in);
  119. /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
  120. acc = __SMLALD(b1, state_in, out);
  121. /* acc += a1 * y[n-1] + a2 * y[n-2] */
  122. acc = __SMLALD(a1, state_out, acc);
  123. /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
  124. /* Calc lower part of acc */
  125. acc_l = acc & 0xffffffff;
  126. /* Calc upper part of acc */
  127. acc_h = (acc >> 32) & 0xffffffff;
  128. /* Apply shift for lower part of acc and upper part of acc */
  129. out = (uint32_t) acc_l >> lShift | acc_h << uShift;
  130. out = __SSAT(out, 16);
  131. /* Every time after the output is computed state should be updated. */
  132. /* The states should be updated as: */
  133. /* Xn2 = Xn1 */
  134. /* Xn1 = Xn */
  135. /* Yn2 = Yn1 */
  136. /* Yn1 = acc */
  137. /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
  138. /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
  139. #ifndef ARM_MATH_BIG_ENDIAN
  140. state_in = __PKHBT(in, state_in, 16);
  141. state_out = __PKHBT(out, state_out, 16);
  142. #else
  143. state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
  144. state_out = __PKHBT(state_out >> 16, (out), 16);
  145. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  146. /* out = b0 * x[n] + 0 * 0 */
  147. out = __SMUADX(b0, in);
  148. /* acc += b1 * x[n-1] + b2 * x[n-2] + out */
  149. acc = __SMLALD(b1, state_in, out);
  150. /* acc += a1 * y[n-1] + a2 * y[n-2] */
  151. acc = __SMLALD(a1, state_out, acc);
  152. /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
  153. /* Calc lower part of acc */
  154. acc_l = acc & 0xffffffff;
  155. /* Calc upper part of acc */
  156. acc_h = (acc >> 32) & 0xffffffff;
  157. /* Apply shift for lower part of acc and upper part of acc */
  158. out = (uint32_t) acc_l >> lShift | acc_h << uShift;
  159. out = __SSAT(out, 16);
  160. /* Store the output in the destination buffer. */
  161. #ifndef ARM_MATH_BIG_ENDIAN
  162. *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);
  163. #else
  164. *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);
  165. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  166. /* Every time after the output is computed state should be updated. */
  167. /* The states should be updated as: */
  168. /* Xn2 = Xn1 */
  169. /* Xn1 = Xn */
  170. /* Yn2 = Yn1 */
  171. /* Yn1 = acc */
  172. /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
  173. /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
  174. #ifndef ARM_MATH_BIG_ENDIAN
  175. state_in = __PKHBT(in >> 16, state_in, 16);
  176. state_out = __PKHBT(out, state_out, 16);
  177. #else
  178. state_in = __PKHBT(state_in >> 16, in, 16);
  179. state_out = __PKHBT(state_out >> 16, out, 16);
  180. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  181. /* Decrement the loop counter */
  182. sample--;
  183. }
  184. /* If the blockSize is not a multiple of 2, compute any remaining output samples here.
  185. ** No loop unrolling is used. */
  186. if((blockSize & 0x1u) != 0u)
  187. {
  188. /* Read the input */
  189. in = *pIn++;
  190. /* out = b0 * x[n] + 0 * 0 */
  191. #ifndef ARM_MATH_BIG_ENDIAN
  192. out = __SMUAD(b0, in);
  193. #else
  194. out = __SMUADX(b0, in);
  195. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  196. /* acc = b1 * x[n-1] + b2 * x[n-2] + out */
  197. acc = __SMLALD(b1, state_in, out);
  198. /* acc += a1 * y[n-1] + a2 * y[n-2] */
  199. acc = __SMLALD(a1, state_out, acc);
  200. /* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */
  201. /* Calc lower part of acc */
  202. acc_l = acc & 0xffffffff;
  203. /* Calc upper part of acc */
  204. acc_h = (acc >> 32) & 0xffffffff;
  205. /* Apply shift for lower part of acc and upper part of acc */
  206. out = (uint32_t) acc_l >> lShift | acc_h << uShift;
  207. out = __SSAT(out, 16);
  208. /* Store the output in the destination buffer. */
  209. *pOut++ = (q15_t) out;
  210. /* Every time after the output is computed state should be updated. */
  211. /* The states should be updated as: */
  212. /* Xn2 = Xn1 */
  213. /* Xn1 = Xn */
  214. /* Yn2 = Yn1 */
  215. /* Yn1 = acc */
  216. /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
  217. /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */
  218. #ifndef ARM_MATH_BIG_ENDIAN
  219. state_in = __PKHBT(in, state_in, 16);
  220. state_out = __PKHBT(out, state_out, 16);
  221. #else
  222. state_in = __PKHBT(state_in >> 16, in, 16);
  223. state_out = __PKHBT(state_out >> 16, out, 16);
  224. #endif /* #ifndef ARM_MATH_BIG_ENDIAN */
  225. }
  226. /* The first stage goes from the input wire to the output wire. */
  227. /* Subsequent numStages occur in-place in the output wire */
  228. pIn = pDst;
  229. /* Reset the output pointer */
  230. pOut = pDst;
  231. /* Store the updated state variables back into the state array */
  232. *__SIMD32(pState)++ = state_in;
  233. *__SIMD32(pState)++ = state_out;
  234. /* Decrement the loop counter */
  235. stage--;
  236. } while(stage > 0u);
  237. #else
  238. /* Run the below code for Cortex-M0 */
  239. q15_t *pIn = pSrc; /* Source pointer */
  240. q15_t *pOut = pDst; /* Destination pointer */
  241. q15_t b0, b1, b2, a1, a2; /* Filter coefficients */
  242. q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */
  243. q15_t Xn; /* temporary input */
  244. q63_t acc; /* Accumulator */
  245. int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */
  246. q15_t *pState = S->pState; /* State pointer */
  247. q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
  248. uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */
  249. do
  250. {
  251. /* Reading the coefficients */
  252. b0 = *pCoeffs++;
  253. pCoeffs++; // skip the 0 coefficient
  254. b1 = *pCoeffs++;
  255. b2 = *pCoeffs++;
  256. a1 = *pCoeffs++;
  257. a2 = *pCoeffs++;
  258. /* Reading the state values */
  259. Xn1 = pState[0];
  260. Xn2 = pState[1];
  261. Yn1 = pState[2];
  262. Yn2 = pState[3];
  263. /* The variables acc holds the output value that is computed:
  264. * acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]
  265. */
  266. sample = blockSize;
  267. while(sample > 0u)
  268. {
  269. /* Read the input */
  270. Xn = *pIn++;
  271. /* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */
  272. /* acc = b0 * x[n] */
  273. acc = (q31_t) b0 *Xn;
  274. /* acc += b1 * x[n-1] */
  275. acc += (q31_t) b1 *Xn1;
  276. /* acc += b[2] * x[n-2] */
  277. acc += (q31_t) b2 *Xn2;
  278. /* acc += a1 * y[n-1] */
  279. acc += (q31_t) a1 *Yn1;
  280. /* acc += a2 * y[n-2] */
  281. acc += (q31_t) a2 *Yn2;
  282. /* The result is converted to 1.31 */
  283. acc = __SSAT((acc >> shift), 16);
  284. /* Every time after the output is computed state should be updated. */
  285. /* The states should be updated as: */
  286. /* Xn2 = Xn1 */
  287. /* Xn1 = Xn */
  288. /* Yn2 = Yn1 */
  289. /* Yn1 = acc */
  290. Xn2 = Xn1;
  291. Xn1 = Xn;
  292. Yn2 = Yn1;
  293. Yn1 = (q15_t) acc;
  294. /* Store the output in the destination buffer. */
  295. *pOut++ = (q15_t) acc;
  296. /* decrement the loop counter */
  297. sample--;
  298. }
  299. /* The first stage goes from the input buffer to the output buffer. */
  300. /* Subsequent stages occur in-place in the output buffer */
  301. pIn = pDst;
  302. /* Reset to destination pointer */
  303. pOut = pDst;
  304. /* Store the updated state variables back into the pState array */
  305. *pState++ = Xn1;
  306. *pState++ = Xn2;
  307. *pState++ = Yn1;
  308. *pState++ = Yn2;
  309. } while(--stage);
  310. #endif /* #ifndef ARM_MATH_CM0_FAMILY */
  311. }
  312. /**
  313. * @} end of BiquadCascadeDF1 group
  314. */