/** * \file impl.hpp * \brief Implementation common header file * * \author * Christos Choutouridis AEM:8997 * */ #ifndef IMPL_HPP_ #define IMPL_HPP_ #include #include #include #include #include #include #include #include using std::size_t; /* * Small helper to strip types */ template struct remove_cvref { typedef std::remove_cv_t> type; }; template using remove_cvref_t = typename remove_cvref::type; /*! * Enumerator to denote the storage type of the array to use. */ enum class MatrixType { FULL, /*!< Matrix is asymmetric */ SYMMETRIC, /*!< Matrix is symmetric */ }; /* * Forward type declarations */ template struct Matrix; template struct SpMat; template struct SpMatCol; template struct SpMatRow; template struct SpMatVal; /*! * 2D-array wrapper for v1 and v2 part of the exercise used as RAII * and copy-prevention. * * This is a very thin abstraction layer over a native array. * This is tested using compiler explorer and our template produce * almost identical assembly. * * The penalty hit we have is due to the fact that we use a one dimension array * and we have to calculate the actual position from an (i,j) pair. * The use of 1D array was our intention from the beginning, so the penalty * was pretty much unavoidable. * * \tparam DataType The underling data type of the array * \tparam Type The storage type of the array * \arg FULL For full matrix * \arg SYMMETRIC For symmetric matrix (we use only the lower part) */ template struct Matrix { using dataType = DataType; //!< meta:export of underling data type using indexType = IndexType; //!< meta:export of underling index type static constexpr MatrixType matrixType = Type; //!< export of array type /*! * \name Obj lifetime */ //! @{ //! Constructor using data type and size Matrix(DataType* t, IndexType s) noexcept : m_(t), size_(s) { } //! RAII deleter ~Matrix() { delete m_; } //! move ctor Matrix(Matrix&& a) noexcept { a.swap(*this); } //! move Matrix& operator=(Matrix&& a) noexcept { a.swap(*this); return *this; } Matrix(const Matrix& a) = delete; //!< No copy ctor Matrix& operator=(const Matrix& a) = delete; //!< No copy //! @} //! \name Data exposure //! @{ //! memory capacity of the matrix with diagonal data template std::enable_if_t static constexpr capacity(IndexType N) noexcept { return (N+1)*N/2; } //! memory capacity for full matrix template std::enable_if_t static constexpr capacity(IndexType N) noexcept { return N*N; } //! Get the size of each dimension IndexType size() noexcept { return size_; } /* * virtual 2D accessors */ template std::enable_if_t get (IndexType i, IndexType j) { if (i std::enable_if_t get(IndexType i, IndexType j) { return m_[i*size_ + j]; } template std::enable_if_t set(DataType v, IndexType i, IndexType j) { if (i std::enable_if_t set(DataType v, IndexType i, IndexType j) { return m_[i*size_ + j] =v; } DataType operator()(IndexType i, IndexType j) { return get(i, j); } // a basic serial iterator support DataType* begin() noexcept { return m_; } DataType* end() noexcept { return m_ + Matrix::capacity(size_); } //! @} /*! * \name Safe iteration API * * This api automates the iteration over the array based on * MatrixType */ //! @{ template void for_each_in (IndexType begin, IndexType end, F&& lambda, Args&&... args) { for (IndexType it=begin ; it(lambda)(std::forward(args)..., it); } } //! @} // move helper void swap(Matrix& src) noexcept { std::swap(m_, src.m_); std::swap(size_, src.size_); } private: DataType* m_; //!< Pointer to actual data. IndexType size_; //!< the virtual size of each dimension. }; /*! * RAII allocation helper, the smart_ptr way. */ template Matrix make_Matrix(IndexType s) { return Matrix(new DataType[Matrix::capacity(s)], s); } /** * A simple sparse matrix implementation. * * We use CSC format and provide get/set functionalities for each (i,j) item * on the matrix. We also provide a () overload using a proxy SpMatVal object. * This way the user can: * \code * auto v = A(3,4); * A(3, 4) = 7; * \endcode * * We also provide getCol() and getRow() functions witch return a viewer/iterator to rows and * columns of the matrix. In the case of a symmetric matrix instead of a row we return the * equivalent column. This way we gain speed due to CSC format nature. * * @tparam DataType The type for values * @tparam IndexType The type for indexes * @tparam Type The Matrix type (FULL or SYMMETRIC) */ template struct SpMat { using dataType = DataType; //!< meta:export of underling data type using indexType = IndexType; //!< meta:export of underling index type static constexpr MatrixType matrixType = Type; //!< export of array type friend struct SpMatCol; friend struct SpMatRow; friend struct SpMatVal; /*! * \name Obj lifetime */ //! @{ //! Default ctor with optional memory allocations SpMat(IndexType n=IndexType{}, IndexType nnz=IndexType{}) : values(nnz, DataType{}), rows(nnz, IndexType{}), col_ptr((n)? n+1:2, IndexType{}), N(n), NNZ(nnz) { } //! A ctor using csc array data SpMat(IndexType n, IndexType nnz, const IndexType* row, const IndexType* col) : values(nnz, 1), rows(row, row+nnz), col_ptr(col, col+n+1), N(n), NNZ(nnz) { } //! ctor using csc array data with value array SpMat(IndexType n, IndexType nnz, const DataType* v, const IndexType* row, const IndexType* col) : values(v, v+nnz), rows(row, row+nnz), col_ptr(col, col+n+1), N(n), NNZ(nnz) { } //! ctor vectors of row/col and default value for values array SpMat(IndexType n, IndexType nnz, const DataType v, const std::vector& row, const std::vector& col) : values(nnz, v), rows (row), col_ptr(col), N(n), NNZ(nnz) { } //! move ctor SpMat(SpMat&& a) noexcept { moves(std::move(a)); } //! move SpMat& operator=(SpMat&& a) noexcept { moves(std::move(a)); return *this; } SpMat(const SpMat& a) = delete; //!< make sure there are no copies SpMat& operator=(const SpMat& a) = delete; //!< make sure there are no copies //! @} //! \name Data exposure //! @{ //! \return the dimension of the matrix IndexType size() noexcept { return N; } //! After construction size configuration tool IndexType size(IndexType n) { col_ptr.resize(n+1); return N = n; } //! \return the NNZ of the matrix IndexType capacity() noexcept { return NNZ; } //! After construction NNZ size configuration tool IndexType capacity(IndexType nnz) { values.reserve(nnz); rows.reserve(nnz); return NNZ; } // getters for row arrays of the struct (unused) std::vector& getValues() noexcept { return values; } std::vector& getRows() noexcept { return rows; } std::vector& getCols() noexcept { return col_ptr; } /*! * Return a proxy SpMatVal object with read and write capabilities. * @param i The row number * @param j The column number * @return tHE SpMatVal object */ SpMatVal operator()(IndexType i, IndexType j) { return SpMatVal(this, get(i, j), i, j); } /*! * A read item functionality using binary search to find the correct row * * @param i The row number * @param j The column number * @return The value of the item or DataType{} if is not present. */ DataType get(IndexType i, IndexType j) { IndexType idx; bool found; std::tie(idx, found) =find_idx(rows, col_ptr[j], col_ptr[j+1], i); return (found) ? values[idx] : 0; } /*! * A read item functionality using linear search to find the correct row * * @param i The row number * @param j The column number * @return The value of the item or DataType{} if is not present. */ DataType get_lin(IndexType i, IndexType j) { IndexType idx; bool found; std::tie(idx, found) =find_place_idx(rows, col_ptr[j], col_ptr[j+1], i); return (found) ? values[idx] : 0; } /*! * A write item functionality. * * First we search if the matrix has already a value in (i, j) position. * If so we just change it to a new value. If not we add the item on the matrix. * * @note * When change a value, we don't increase the NNZ value of the struct. We expect the user has already * change the NNZ value to the right one using @see capacity() function. When adding a value we * increase the NNZ. * * @param i The row number * @param j The column number * @return The new value of the item . */ DataType set(DataType v, IndexType i, IndexType j) { IndexType idx; bool found; std::tie(idx, found) = find_place_idx(rows, col_ptr[j], col_ptr[j+1], i); if (found) return values[idx] = v; // we don't change NNZ even if we write "0" else { values.insert(values.begin()+idx, v); rows.insert(rows.begin()+idx, i); std::transform(col_ptr.begin()+j+1, col_ptr.end(), col_ptr.begin()+j+1, [](IndexType it) { return ++it; }); ++NNZ; // we increase the NNZ even if we write "0" return v; } } /*! * Get a view of a CSC column * @param j The column to get * @return The SpMatCol object @see SpMatCol */ SpMatCol getCol(IndexType j) { return SpMatCol(this, col_ptr[j], col_ptr[j+1]); } /*! * Get a view of a CSC row * * In case of a SYMMETRIC matrix we can return a column instead. * * @param j The row to get * @return The SpMatCol object @see SpMatCol */ template std::enable_if_t> getRow(IndexType i) { return getCol(i); } /*! * Get a view of a CSC row * * @param j The row to get * @return The SpMatRow object @see SpMatRow */ template std::enable_if_t> getRow(IndexType i) { return SpMatRow(this, i); } // values only iterator support DataType* begin() noexcept { return values.begin(); } DataType* end() noexcept { return values.end(); } //! @} //! A small iteration helper template void for_each_in (IndexType begin, IndexType end, F&& lambda, Args&&... args) { for (IndexType it=begin ; it(lambda)(std::forward(args)..., it); } } // friend operations for printing template friend void print(SpMat& mat); template friend void print_dense(SpMat& mat); private: /*! * A small binary search implementation using index for begin-end instead of iterators. * * \param v Reference to vector to search * \param begin The vector's index to begin * \param end The vector's index to end * \param match What to search * \return An pair. * index is the index of the item or end if not found * status is true if found, false otherwise */ std::pair find_idx(const std::vector& v, IndexType begin, IndexType end, IndexType match) { IndexType b = begin, e = end-1; while (b <= e) { IndexType m = (b+e)/2; if (v[m] == match) return std::make_pair(m, true); else if (b >= e) return std::make_pair(end, false); else { if (v[m] < match) b = m +1; else e = m -1; } } return std::make_pair(end, false); } /*! * find helper for set using index for begin-end instead of iterators. * * We search for the item or a place to add the item. * So we return the index if we find it. Otherwise we return the place to add it. * * \param v Reference to vector to search * \param begin The vector's index to begin * \param end The vector's index to end * \param match What to search * \return An pair. * index is the index of the item or end if not found * status is true if found, false otherwise */ std::pair find_place_idx(const std::vector& v, IndexType begin, IndexType end, IndexType match) { for ( ; begin < end ; ++begin) { if (match == v[begin]) return std::make_pair(begin, true); else if (match < v[begin]) return std::make_pair(begin, false); } return std::make_pair(end, false); } // move helper void moves(SpMat&& src) noexcept { values = std::move(src.values); rows = std::move(src.rows); col_ptr = std::move(src.col_ptr); N = std::move(src.N); // redundant for primitives NNZ = std::move(src.NNZ); // } //! \name Data //! @{ std::vector values {}; //!< vector to store the values of the matrix std::vector rows{}; //!< vector to store the row information std::vector col_ptr{1,0}; //!< vector to store the column pointers IndexType N{0}; //!< The dimension of the matrix (square) IndexType NNZ{0}; //!< The NNZ (capacity of the matrix) //! @} }; /*! * A view/iterator hybrid object for SpMat columns. * * This object provides access to a column of a SpMat. The public functionalities * allow data access using indexes instead of iterators. We prefer indexes over iterators * because we can apply the same index to different inner vector of SpMat without conversion. * * @tparam DataType * @tparam IndexType */ template struct SpMatCol { using owner_t = SpMat; /*! * ctor using column pointers for begin-end. own is pointer to SpMat. */ SpMatCol(owner_t* own, const IndexType begin, const IndexType end) noexcept : owner_(own), index_(begin), begin_(begin), end_(end) { vindex_ = vIndexCalc(index_); } SpMatCol() = default; SpMatCol(const SpMatCol&) = delete; //!< make sure there are no copies SpMatCol& operator=(const SpMatCol&)= delete; //!< make sure there are no copies SpMatCol(SpMatCol&&) = default; SpMatCol& operator=(SpMatCol&&) = default; //! a simple dereference operator, like an iterator DataType operator* () { return get(); } //! Increment operator acts on index(), like an iterator SpMatCol& operator++ () { advance(); return *this; } SpMatCol& operator++ (int) { SpMatCol& p = *this; advance(); return p; } //! () operator acts as member access (like a view) DataType operator()(IndexType x) { return (x == index())? get() : DataType{}; } //! = operator acts as member assignment (like a view) DataType operator= (DataType v) { return owner_->values[index_] = v; } // iterator like handlers // these return a virtual index value based on the items position on the full matrix // but the move of the index is just a ++ away. IndexType index() noexcept { return vindex_; } const IndexType index() const noexcept { return vindex_; } IndexType begin() noexcept { return vIndexCalc(begin_); } const IndexType begin() const noexcept { return vIndexCalc(begin_); } IndexType end() noexcept { return owner_->N; } const IndexType end() const noexcept { return owner_->N; } /*! * Multiplication operator * * We follow only the non-zero values and multiply only the common indexes. * * @tparam C Universal reference for the type right half site column * * @param c The right hand site matrix * @return The value of the inner product of two vectors * @note The time complexity is \$ O(nnz1+nnz2) \$. * Where the nnz is the max NNZ elements of the column of the matrix */ template DataType operator* (C&& c) { static_assert(std::is_same, SpMatCol>(), ""); DataType v{}; while (index() != end() && c.index() != c.end()) { if (index() < c.index()) advance(); // advance me else if (index() > c.index()) ++c; // advance other else { //index() == c.index() v += get() * *c; // multiply and advance both ++c; advance(); } } return v; } private: //! small tool to increase the index pointers to SpMat matrix void advance() noexcept { ++index_; vindex_ = vIndexCalc(index_); } //! tool to translate between col_ptr indexes and SpMat "virtual" full matrix indexes IndexType vIndexCalc(IndexType idx) { return (idx < end_) ? owner_->rows[idx] : end(); } //! small get tool DataType get() { return owner_->values[index_]; } owner_t* owner_ {nullptr}; //!< Pointer to owner SpMat. SpMatCol is just a view IndexType vindex_ {IndexType{}}; //!< Virtual index of full matrix IndexType index_ {IndexType{}}; //!< index to SpMat::rows IndexType begin_ {IndexType{}}; //!< beginning index of the column in SpMat::rows IndexType end_ {IndexType{}}; //!< ending index of the column in SpMat::rows }; /*! * A view/iterator hybrid object for SpMat rows. * * This object provides access to a column of a SpMat. The public functionalities * allow data access using indexes instead of iterators. We prefer indexes over iterators * because we can apply the same index to different inner vector of SpMat without conversion. * * @tparam DataType * @tparam IndexType */ template struct SpMatRow { using owner_t = SpMat; /*! * ctor using virtual full matrix row index. own is pointer to SpMat. */ SpMatRow(owner_t* own, const IndexType row) noexcept : owner_(own), vindex_(IndexType{}), row_(row), index_(IndexType{}), begin_(IndexType{}), end_(owner_->NNZ) { // place begin while(begin_ != end_ && owner_->rows[begin_] != row_) ++begin_; // place index_ and vindex_ if (owner_->rows[index_] != row_) advance(); } SpMatRow() = default; SpMatRow(const SpMatRow&) = delete; //!< make sure there are no copies SpMatRow& operator=(const SpMatRow&)= delete; //!< make sure there are no copies SpMatRow(SpMatRow&&) = default; SpMatRow& operator=(SpMatRow&&) = default; //! a simple dereference operator, like an iterator DataType operator* () { return get(); } //! Increment operator acts on index(), like an iterator //! here the increment is a O(N) process. SpMatRow& operator++ () { advance(); return *this; } SpMatRow& operator++ (int) { SpMatRow& p = *this; advance(); return p; } //! () operator acts as member access (like a view) DataType operator()(IndexType x) { return (x == index())? get() : DataType{}; } //! = operator acts as member assignment (like a view) DataType operator= (DataType v) { return owner_->values[index_] = v; } // iterator like handlers // these return a virtual index value based on the items position on the full matrix // but the move of the index is just a ++ away. IndexType index() noexcept { return vindex_; } const IndexType index() const noexcept { return vindex_; } IndexType begin() noexcept { return vIndexCalc(begin_); } const IndexType begin() const noexcept { return vIndexCalc(begin_); } IndexType end() noexcept { return owner_->N; } const IndexType end() const noexcept { return owner_->N; } /*! * Multiplication operator * * We follow only the non-zero values and multiply only the common indexes. * * @tparam C Universal reference for the type right half site column * * @param c The right hand site matrix * @return The value of the inner product of two vectors * @note The time complexity is \$ O(N+nnz2) \$ and way heavier the ColxCol multiplication. * Where the nnz is the max NNZ elements of the column of the matrix */ template DataType operator* (C&& c) { static_assert(std::is_same, SpMatCol>(), ""); DataType v{}; while (index() != end() && c.index() != c.end()) { if (index() < c.index()) advance(); // advance me else if (index() > c.index()) ++c; // advance other else { //index() == c.index() v += get() * *c; // multiply and advance both ++c; advance(); } } return v; } private: //! small tool to increase the index pointers to SpMat matrix //! We have to search the entire rows vector in SpMat to find the next //! virtual row position. //! time complexity O(N) void advance() noexcept { do ++index_; while(index_ != end_ && owner_->rows[index_] != row_); vindex_ = vIndexCalc(index_); } //! tool to translate between col_ptr indexes and SpMat "virtual" full matrix indexes IndexType vIndexCalc(IndexType idx) { for(IndexType i =0 ; i<(owner_->N+1) ; ++i) if (idx < owner_->col_ptr[i]) return i-1; return end(); } //! small get tool DataType get() { return owner_->values[index_]; } owner_t* owner_ {nullptr}; //!< Pointer to owner SpMat. SpMatCol is just a view IndexType vindex_ {IndexType{}}; //!< Virtual index of full matrix IndexType row_ {IndexType{}}; //!< The virtual full matrix row of the object IndexType index_ {IndexType{}}; //!< index to SpMat::rows IndexType begin_ {IndexType{}}; //!< beginning index of the column in SpMat::rows IndexType end_ {IndexType{}}; //!< ending index of the column in SpMat::rows }; /*! * A proxy SpMat value object/view. * * This object acts as proxy to provide read/write access to an SpMat item. * * @tparam DataType The type of the values of the SpMat matrix * @tparam IndexType The type of the indexes of the SpMat matrix */ template struct SpMatVal { using owner_t = SpMat; //!< ctor using all value-row-column data, plus a pointer to owner SpMat object SpMatVal(owner_t* own, DataType v, IndexType i, IndexType j) : owner_(own), v_(v), i_(i), j_(j) { } SpMatVal() = default; SpMatVal(const SpMatVal&) = delete; //!< make sure there are no copies SpMatVal& operator=(const SpMatVal&) = delete; //!< make sure there are no copies SpMatVal(SpMatVal&&) = default; SpMatVal& operator=(SpMatVal&&) = default; //! Operator to return the DataType value implicitly operator DataType() { return v_; } //! Operator to write back to owner the assigned value //! for ex: A(2,3) = 5; SpMatVal& operator=(DataType v) { v_ = v; owner_->set(v_, i_, j_); return *this; } private: owner_t* owner_{nullptr}; //!< Pointer to owner SpMat. SpMatVal is just a view. DataType v_{DataType{}}; //!< The value of the row-column pair (for speed) IndexType i_{IndexType{}}; //!< The row IndexType j_{IndexType{}}; //!< the column }; //! enumerator for input matrix type. enum class InputMatrix{ UNSPECIFIED, GENERATE, MTX }; //! enumerator for output handling enum class OutputMode{ STD, FILE }; /*! * Session option for each invocation of the executable */ struct session_t { InputMatrix inputMatrix {InputMatrix::UNSPECIFIED}; //!< Source of the matrix std::ifstream mtxFile {}; //!< matrix file in MatrixMarket format std::size_t gen_size {}; //!< size of the matrix if we select to generate a random one double gen_prob {}; //!< probability of the binomial distribution for the matrix //!< if we generate one OutputMode outputMode {OutputMode::STD}; //!< Type of the output file std::ofstream outFile {}; //!< File to use for output std::size_t max_threads {}; //!< Maximum threads to use std::size_t repeat {1}; //!< How many times we execute the calculations part bool timing {false}; //!< Enable timing prints of the program bool verbose {false}; //!< Flag to enable verbose output to stdout #if CODE_VERSION == 3 bool makeSymmetric {false}; //!< symmetric matrix creation flag (true by default) #else bool makeSymmetric {true}; //!< symmetric matrix creation flag (true by default) #endif bool validate_mtx {false}; //!< Flag to request mtx input data triangular validation. bool print_count {false}; //!< Flag to request total count printing bool mtx_print {false}; //!< matrix print flag std::size_t mtx_print_size {}; //!< matrix print size bool dynamic {false}; //!< Selects dynamic scheduling for OpenMP and pthreads. }; extern session_t session; #endif /* IMPL_HPP_ */