Browse Source

A measurement ready version

tags/v1.0b1^0
parent
commit
8b5112dc2a
28 changed files with 10166 additions and 112 deletions
  1. +4
    -0
      .gitignore
  2. +62
    -15
      Makefile
  3. +1170
    -0
      hpc-results/ntasks1.out
  4. +19
    -0
      hpc-results/ntasks1.sh
  5. +1170
    -0
      hpc-results/ntasks10.out
  6. +19
    -0
      hpc-results/ntasks10.sh
  7. +1170
    -0
      hpc-results/ntasks15.out
  8. +19
    -0
      hpc-results/ntasks15.sh
  9. +1170
    -0
      hpc-results/ntasks2.out
  10. +19
    -0
      hpc-results/ntasks2.sh
  11. +1170
    -0
      hpc-results/ntasks20.out
  12. +19
    -0
      hpc-results/ntasks20.sh
  13. +1170
    -0
      hpc-results/ntasks4.out
  14. +19
    -0
      hpc-results/ntasks4.sh
  15. +1170
    -0
      hpc-results/ntasks5.out
  16. +19
    -0
      hpc-results/ntasks5.sh
  17. +1170
    -0
      hpc-results/ntasks8.out
  18. +19
    -0
      hpc-results/ntasks8.sh
  19. +1
    -0
      inc/config.h
  20. +17
    -0
      inc/elearn.h
  21. +26
    -6
      inc/impl.hpp
  22. +1
    -0
      inc/v3.h
  23. +2
    -0
      inc/v4.h
  24. +31
    -0
      runall.sh
  25. +126
    -0
      src/elearn.cpp
  26. +71
    -10
      src/main.cpp
  27. +139
    -48
      src/v3.cpp
  28. +174
    -33
      src/v4.cpp

+ 4
- 0
.gitignore View File

@@ -5,6 +5,10 @@ out/
mat/
mtx/

# hpc related
exclude
hpc_auth_sync.sh

# eclipse
.project
.cproject


+ 62
- 15
Makefile View File

@@ -38,7 +38,7 @@ DEP_DIR := $(BUILD_DIR)/.dep
# ========== Compiler settings ==========
# Compiler flags for debug and release
DEB_CFLAGS := -DDEBUG -g3 -Wall -Wextra -std=c++14
REL_CFLAGS := -DDEBUG -g3 -Wall -Wextra -O2 -std=c++14
REL_CFLAGS := -Wall -Wextra -O3 -std=c++14
# Pre-defines
# PRE_DEFS := MYCAB=1729 SUPER_MODE
PRE_DEFS :=
@@ -151,39 +151,50 @@ release: $(BUILD_DIR)/$(TARGET)

all: release

local_v3: CFLAGS := $(DEB_CFLAGS) -DCODE_VERSION=V3
local_v3: CFLAGS := $(DEB_CFLAGS) -DCODE_VERSION=3
local_v3: TARGET := local_v3
local_v3: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

local_v4: CFLAGS := $(DEB_CFLAGS) -DCODE_VERSION=V4
local_v4: CFLAGS := $(DEB_CFLAGS) -DCODE_VERSION=4
local_v4: TARGET := local_v4
local_v4: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

elearn: CFLAGS := $(DEB_CFLAGS) -DELEARNING
elearn: TARGET := elearn
elearn: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)
local_v4_opt: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=4 -pg
local_v4_opt: LDFLAGS += -pg
local_v4_opt: TARGET := local_v4_opt
local_v4_opt: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

v3: DOCKER := $(DOCKER_CMD)
v3: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=V3
v3: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=3
v3: TARGET := tcount_v3
v3: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

v3_cilk: DOCKER := $(DOCKER_CMD)
v3_cilk: CXX := /usr/local/OpenCilk-9.0.1-Linux/bin/clang++
v3_cilk: CFLAGS := $(REL_CFLAGS) -fcilkplus -DCODE_VERSION=V3 -DCILK
v3_cilk: CFLAGS := $(REL_CFLAGS) -fcilkplus -DCODE_VERSION=3 -DCILK
v3_cilk: LDFLAGS += -fcilkplus
v3_cilk: TARGET := tcount_cilkv3
v3_cilk: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

v3_omp: DOCKER := $(DOCKER_CMD)
v3_omp: CFLAGS := $(REL_CFLAGS) -fopenmp -DCODE_VERSION=V3 -DOMP
v3_omp: CFLAGS := $(REL_CFLAGS) -fopenmp -DCODE_VERSION=3 -DOMP
v3_omp: LDFLAGS += -fopenmp
v3_omp: TARGET := tcount_ompv3
v3_omp: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

v4: DOCKER := $(DOCKER_CMD)
v4: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=V4
v4: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=4
v4: TARGET := tcount_v4
v4: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)
@@ -197,25 +208,61 @@ v4_cilk: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

v4_omp: DOCKER := $(DOCKER_CMD)
v4_omp: CFLAGS := $(REL_CFLAGS) -fopenmp -DCODE_VERSION=V4 -DOMP
v4_omp: CFLAGS := $(REL_CFLAGS) -fopenmp -DCODE_VERSION=4 -DOMP
v4_omp: LDFLAGS += -fopenmp
v4_omp: TARGET := tcount_ompv4
v4_omp: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

v4_pthreads: DOCKER := $(DOCKER_CMD)
v4_pthreads: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=V4 -DTHREADS
v4_pthreads: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=4 -DTHREADS
v4_pthreads: TARGET := tcount_pthv4
v4_pthreads: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)


#
# ================ Docker based rules ================
# examples:
# make IMAGE="gcc:8.3" dock
# ================ hpc build rules =================
#
dock: DOCKER := $(DOCKER_CMD)
dock: CFLAGS := $(REL_CFLAGS)
dock: $(BUILD_DIR)/$(TARGET)
hpc_v3_ser: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=3
hpc_v3_ser: TARGET := hpc_v3
hpc_v3_ser: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

hpc_v3_omp: CFLAGS := $(REL_CFLAGS) -fopenmp -DCODE_VERSION=3 -DOMP
hpc_v3_omp: LDFLAGS += -fopenmp
hpc_v3_omp: TARGET := hpc_ompv3
hpc_v3_omp: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

hpc_v3_cilk: CXX := clang++
hpc_v3_cilk: CFLAGS := $(REL_CFLAGS) -fcilkplus -DCODE_VERSION=3 -DCILK
hpc_v3_cilk: LDFLAGS += -fcilkplus
hpc_v3_cilk: TARGET := hpc_cilkv3
hpc_v3_cilk: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

hpc_v4_ser: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=4
hpc_v4_ser: TARGET := hpc_v4
hpc_v4_ser: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

hpc_v4_omp: CFLAGS := $(REL_CFLAGS) -fopenmp -DCODE_VERSION=4 -DOMP
hpc_v4_omp: LDFLAGS += -fopenmp
hpc_v4_omp: TARGET := hpc_ompv4
hpc_v4_omp: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

hpc_v4_cilk: CXX := clang++
hpc_v4_cilk: CFLAGS := $(REL_CFLAGS) -fcilkplus -DCODE_VERSION=4 -DCILK
hpc_v4_cilk: LDFLAGS += -fcilkplus
hpc_v4_cilk: TARGET := hpc_cilkv4
hpc_v4_cilk: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)

hpc_v4_pth: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=4 -DTHREADS
hpc_v4_pth: TARGET := hpc_pthv4
hpc_v4_pth: $(BUILD_DIR)/$(TARGET)
cp $(BUILD_DIR)/$(TARGET) out/$(TARGET)



+ 1170
- 0
hpc-results/ntasks1.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks1.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --output=ntasks1.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1170
- 0
hpc-results/ntasks10.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks10.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=10
#SBATCH --output=ntasks10.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1170
- 0
hpc-results/ntasks15.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks15.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=15
#SBATCH --output=ntasks15.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1170
- 0
hpc-results/ntasks2.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks2.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=2
#SBATCH --output=ntasks2.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1170
- 0
hpc-results/ntasks20.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks20.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=20
#SBATCH --output=ntasks20.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1170
- 0
hpc-results/ntasks4.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks4.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=4
#SBATCH --output=ntasks4.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1170
- 0
hpc-results/ntasks5.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks5.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=5
#SBATCH --output=ntasks5.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1170
- 0
hpc-results/ntasks8.out
File diff suppressed because it is too large
View File


+ 19
- 0
hpc-results/ntasks8.sh View File

@@ -0,0 +1,19 @@
#! /usr/bin/env bash

#SBATCH --time=20:00
#SBATCH --partition=batch
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --output=ntasks8.out

module load gcc/9.2.0 openmpi/3.1.6
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/lib

export OMP_NUM_THREADS=$SLURM_NTASKS
export CILK_NWORKERS=$SLURM_NTASKS

./runall.sh mtx/belgium_osm.mtx 8
./runall.sh mtx/com-Youtube.mtx 8
./runall.sh mtx/dblp-2010.mtx 8
./runall.sh mtx/mycielskian13.mtx 8
./runall.sh mtx/NACA0015.mtx 8

+ 1
- 0
inc/config.h View File

@@ -13,6 +13,7 @@
#include <v12.h>
#include <v3.h>
#include <v4.h>
#include <elearn.h>

/*
* Defines for different version of the exercise


+ 17
- 0
inc/elearn.h View File

@@ -0,0 +1,17 @@
/*!
* \file elearn.h
* \brief e-learning version of the exercise.
*
* \author
* Christos Choutouridis AEM:8997
* <cchoutou@ece.auth.gr>
*/
#ifndef ELEARN_H_
#define ELEARN_H_

#include <impl.hpp>

uint32_t elearn_test (void) ;


#endif /* ELEARN_H_ */

+ 26
- 6
inc/impl.hpp View File

@@ -284,8 +284,22 @@ struct SpMat {
* @return The value of the item or DataType{} if is not present.
*/
DataType get(IndexType i, IndexType j) {
IndexType end, idx =find_idx(rows, col_ptr[j], end=col_ptr[j+1], i);
return (idx != end) ? values[idx] : 0;
IndexType idx; bool found;
std::tie(idx, found) =find_idx(rows, col_ptr[j], col_ptr[j+1], i);
return (found) ? values[idx] : 0;
}

/*!
* A read item functionality using binary search to find the correct row
*
* @param i The row number
* @param j The column number
* @return The value of the item or DataType{} if is not present.
*/
DataType get2(IndexType i, IndexType j) {
IndexType idx; bool found;
std::tie(idx, found) =find2_idx(rows, col_ptr[j], col_ptr[j+1], i);
return (found) ? values[idx] : 0;
}

/*!
@@ -380,18 +394,18 @@ private:
* \param match What to search
* @return The index of the item or end on failure.
*/
IndexType find_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) {
std::pair<IndexType, bool> find_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) {
IndexType b = begin, e = end-1;
while (true) {
IndexType m = (b+e)/2;
if (v[m] == match) return m;
else if (b >= e) return end;
if (v[m] == match) return std::make_pair(m, true);
else if (b >= e) return std::make_pair(end, false);
else {
if (v[m] < match) b = m +1;
else e = m -1;
}
}
return end;
return std::make_pair(end, false);;
}
/*!
* find helper for set using index for begin-end instead of iterators.
@@ -687,13 +701,19 @@ struct session_t {
OutputMode outputMode {OutputMode::STD}; //!< Type of the output file
std::ofstream outFile {}; //!< File to use for output
std::size_t max_threads {}; //!< Maximum threads to use
std::size_t repeat {1}; //!< How many times we execute the calculations part
bool timing {false}; //!< Enable timing prints of the program
bool verbose {false}; //!< Flag to enable verbose output to stdout
#if CODE_VERSION == 3
bool makeSymmetric {false}; //!< symmetric matrix creation flag (true by default)
#else
bool makeSymmetric {true}; //!< symmetric matrix creation flag (true by default)
#endif
bool validate_mtx {false}; //!< Flag to request mtx input data triangular validation.
bool print_count {false}; //!< Flag to request total count printing
bool mtx_print {false}; //!< matrix print flag
std::size_t mtx_print_size {}; //!< matrix print size
bool dynamic {false}; //!< Selects dynamic scheduling for OpenMP and pthreads.
};

extern session_t session;


+ 1
- 0
inc/v3.h View File

@@ -11,6 +11,7 @@

#include <iostream>
#include <mutex>
#include <atomic>
#include <impl.hpp>

#if defined CILK


+ 2
- 0
inc/v4.h View File

@@ -24,6 +24,8 @@

#elif defined THREADS
#include <thread>
#include <numeric>
#include <random>

#else
#endif


+ 31
- 0
runall.sh View File

@@ -0,0 +1,31 @@
#!/usr/bin/env bash

if [[ $# -lt 2 ]]; then
echo "Error: You must pass the matrix files and the number of iterations"
echo "example $ runnall.sh mtx/s12.mtx 5"
exit 1;
fi

dynamics=("out/hpc_ompv3" "out/hpc_ompv4" "out/hpc_pthv4")

for ex in out/*; do
echo "-------------------------------------------"
echo "executable: $ex"
for file in "$@"; do
if [[ $file == ${@: -1} ]];then
continue
fi
echo "running $ex -i $file -r ${@: -1} --timing -o /dev/null"
eval $ex -i $file -r ${@: -1} --timing -o /dev/null
echo "running $ex -i $file -r ${@: -1} --timing --print_count"
eval $ex -i $file -r ${@: -1} --timing --print_count
if [[ $ex == ${dynamics[0]} || $ex == ${dynamics[1]} || $ex == ${dynamics[2]} ]]; then
echo "running $ex -i $file -r ${@: -1} --timing -o /dev/null --dynamic"
eval $ex -i $file -r ${@: -1} --timing -o /dev/null --dynamic
echo "running $ex -i $file -r ${@: -1} --timing --print_count --dynamic"
eval $ex -i $file -r ${@: -1} --timing --print_count --dynamic
fi
done
done


+ 126
- 0
src/elearn.cpp View File

@@ -0,0 +1,126 @@
/*!
* \file elearn.cpp
* \brief e-learning version of the exercise.
*
* \author
* Christos Choutouridis AEM:8997
* <cchoutou@ece.auth.gr>
*/
#include <elearn.h>

//------- e-learning code start ---------

//! Credits to PDS team
static void coo2csc_e(
uint32_t *row, uint32_t *col, uint32_t const* row_coo, uint32_t const* col_coo, uint32_t nnz, uint32_t n, uint32_t isOneBased
) {
// ----- cannot assume that input is already 0!
for (uint32_t l = 0; l < n+1; l++) col[l] = 0;

// ----- find the correct column sizes
for (uint32_t l = 0; l < nnz; l++)
col[col_coo[l] - isOneBased]++;

// ----- cumulative sum
for (uint32_t i = 0, cumsum = 0; i < n; i++) {
uint32_t temp = col[i];
col[i] = cumsum;
cumsum += temp;
}
col[n] = nnz;
// ----- copy the row indices to the correct place
for (uint32_t l = 0; l < nnz; l++) {
uint32_t col_l;
col_l = col_coo[l] - isOneBased;

uint32_t dst = col[col_l];
row[dst] = row_coo[l] - isOneBased;

col[col_l]++;
}
// ----- revert the column pointers
for (uint32_t i = 0, last = 0; i < n; i++) {
uint32_t temp = col[i];
col[i] = last;
last = temp;
}
}

/*!
* A small binary search utility
*/
uint32_t find_idx(const uint32_t* v, uint32_t begin, uint32_t end, uint32_t match) {
uint32_t b = begin, e = end-1;
while (1) {
uint32_t m = (b+e)/2;
if (v[m] == match) return m;
else if (b >= e) return end;
else {
if (v[m] < match) b = m +1;
else e = m -1;
}
}
return end;
}

/*!
* Sparse matrix item accessor
*/
uint32_t get(uint32_t* R, uint32_t* C, uint32_t i, uint32_t j) {
uint32_t e = C[j+1];
return (find_idx(R, C[j], e, i) != e) ? 1 : 0;
}

/*!
* \param coo_row pointer to coo row data
* \param coo_col pointer to coo_column data
* \param n the size of matrix
* \param nz the number of non-zero items
* \return The vertex-wise count vector
*/
uint32_t* vertexWiseTriangleCounts (uint32_t *coo_row, uint32_t *coo_col, uint32_t n, uint32_t nz) {
uint32_t* v = (uint32_t*)malloc(sizeof(uint32_t)*n);
uint32_t* R = (uint32_t*)malloc(sizeof(uint32_t)*nz);
uint32_t* C = (uint32_t*)malloc(sizeof(uint32_t)*n+1);

// convert input
coo2csc_e (R, C, coo_row, coo_col, nz, n, 1);

for (uint32_t i=0 ; i<n ; ++i) {
for (uint32_t j = C[i]; j<C[i+1] ; ++j) {
uint32_t j_idx = R[j];
for (uint32_t k = C[j_idx] ; k<C[j_idx+1] ; ++k) {
uint32_t k_idx = R[k];
if (get(R, C, k_idx, i)) {
++v[i];
++v[j_idx];
++v[k_idx];
}
}
}
}
return v;
}

//------- e-learning code end ---------

/*!
* A unit-test like functionality to check our implementation.
* \return
*/
uint32_t elearn_test (void) {
uint32_t CooR[] = { 2, 4, 6, 7, 3, 5, 6, 8, 11, 12, 4, 11, 12, 7, 6, 7, 9, 10, 12};
uint32_t CooC[] = { 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 6, 8, 8, 11};
uint32_t N = 12;
uint32_t NZ = 19;
uint32_t c3[] = { 3, 5, 3, 1, 1, 3, 2, 0, 0, 0, 3, 3 };

uint32_t* tc3 = vertexWiseTriangleCounts(CooR, CooC, N, NZ); // call

for (uint32_t i=0 ; i<N ; ++i) // validate
if (tc3[i] != c3[i])
return 0; // fail
return 1; // pass
}



+ 71
- 10
src/main.cpp View File

@@ -55,26 +55,72 @@ bool get_options(int argc, char* argv[]){
else if (arg == "-n" || arg == "--max_trheads") {
session.max_threads = (i+1 < argc) ? std::atoi(argv[++i]) : session.max_threads;
}
else if (arg == "-r" || arg == "--repeat") {
session.repeat = (i+1 < argc) ? std::atoi(argv[++i]) : session.repeat;
}
else if (arg == "-t" || arg == "--timing")
session.timing = true;
else if (arg == "-v" || arg == "--verbose")
session.verbose = true;
else if (arg == "--make_symmetric")
session.makeSymmetric = true;
else if (arg == "--triangular_only")
session.makeSymmetric = false;
else if (arg == "--validate_mtx")
session.validate_mtx = true;
else if (arg == "--print_count")
else if (arg == "--dynamic")
session.dynamic = true;
else if (arg == "--print_count") {
session.print_count = true;
session.makeSymmetric = false;
}
else if (arg == "--print_graph") {
session.mtx_print = true;
session.mtx_print_size = (i+1 < argc) ? std::atoi(argv[++i]) : session.mtx_print_size;
}
else if (arg == "-h" || arg == "--help") {
std::cout << "Help message\n";
std::cout << "vertex-wise triangular count utility.\n\n";
std::cout << "tcount -i <file> | -g <size> <probability> [-o <file>] [-n <threads>] [--dynamic] [-r <times>] [-t] [-v]\n";
std::cout << " [--make_symmetric] [--triangular_only] [--print_count] [--validate_mtx] [--print_graph <size>]\n";
std::cout << '\n';
std::cout << "Options:\n\n";
std::cout << " -i | --input <file>\n";
std::cout << " Path to mtx file to load.\n\n";
std::cout << " -g | --generate <size> <probability>\n";
std::cout << " Request a random generated graph with size <size> and probability <probability>.\n";
std::cout << " This is very slow, use it with care.\n\n";
std::cout << " -o | --output <file>\n";
std::cout << " Select <file> as output file. Default is stdout.\n\n";
std::cout << " -n | --max_trheads <threads>\n";
std::cout << " Reduce the thread number for the execution to <threads>. <threads> must be less or equal to available CPUs.\n\n";
std::cout << " --dynamic\n";
std::cout << " Request of dynamic scheduling for OpenMP and pthreads. Does not affect cilk versions.\n\n";
std::cout << " -r | --repeat <times>\n";
std::cout << " Repeat the vector calculation <times> times.\n\n";
std::cout << " -t | --timing\n";
std::cout << " Request timing measurements output to stdout.\n\n";
std::cout << " -v | --verbose\n";
std::cout << " Request a more verbose output to stdout.\n\n";
std::cout << " --make_symmetric\n";
std::cout << " Explicitly request a symmetric graph generation. This affects only V3 versions where by default a lower\n";
std::cout << " triangular matrix is used.\n\n";
std::cout << " --triangular_only\n";
std::cout << " NOTE: Requires also \"--print_count\".\n";
std::cout << " Explicitly request to use a lower triangular matrix. This affects only V4 versions where a symmetric\n";
std::cout << " matrix is used by default and produce correct answer ONLY for total triangle counting (--print_count).\n\n";
std::cout << " --print_count\n";
std::cout << " NOTE: When used, also implies \"---triangular_only\" for all versions.\n";
std::cout << " Request a total triangle counting output.\n\n";
std::cout << " --validate_mtx\n";
std::cout << " Request an input matrix validation before execution.\n\n";
std::cout << " --print_graph <size>\n";
std::cout << " Prints the first <size> x <size> part of the matrix to stdout.\n\n";
std::cout << " -h | --help <size>\n";
std::cout << " Prints this and exit.\n";
exit(0);
}
else { // parse error
std::cout << "Error message\n";
std::cout << "Invokation error. Try -h for details.\n";
status = false;
}
}
@@ -84,6 +130,12 @@ bool get_options(int argc, char* argv[]){
std::cout << "Error message\n";
status = false;
}
#if CODE_VERSION == V4
else if (!session.makeSymmetric && !session.print_count) {
std::cout << "\"--triangular_only\" requires \"--print_count\"\n";
status = false;
}
#endif
return status;
}

@@ -129,17 +181,26 @@ int main(int argc, char* argv[]) try {
std::vector<value_t> c;
index_t s;

#if defined ELEARNING
if (!elearn_test()) std::cout << "E-learning test: FAIL\n";
else std::cout << "E-learning test: PASS\n";
exit(0);
#endif

// try to read command line
if (!get_options(argc, argv))
exit(1);

prepare_matrix(A, timer);
threads_info();
logger << "Create count vector" << logger.endl;
timer.start();
c = triang_v (A);
timer.stop();
timer.print_dt("create count vector");
for (size_t i =0 ; i<session.repeat ; ++i) {
// repeat calculations as requested by user
logger << "Create vector" << logger.endl;
timer.start();
c = triang_v (A);
timer.stop();
timer.print_dt("create vector");
}
if (session.print_count) {
logger << "Calculate total triangles" << logger.endl;
timer.start();
@@ -156,7 +217,7 @@ int main(int argc, char* argv[]) try {
return 0;
}
catch (std::exception& e) {
//we probably pollute the user's screen. Comment `cerr << ...` if you don't like it.
std::cerr << e.what() << '\n';
//we probably pollute the user's screen. Comment `cerr << ...` if you don't like it.
std::cerr << e.what() << '\n';
exit(1);
}

+ 139
- 48
src/v3.cpp View File

@@ -8,23 +8,20 @@
*/
#include <v3.h>

// for (int i=0 ; i<A.size() ; ++i) {
// for (int j = A.col_ptr[i]; j<A.col_ptr[i+1] ; ++j) {
// int j_idx = A.rows[j];
// for (int k = A.col_ptr[j_idx] ; k<A.col_ptr[j_idx+1] ; ++k) {
// int k_idx = A.rows[k];
// if (A.get(k_idx, i)) {
// ++c[i];
// }
// }
// }
// }

namespace v3 {

#if defined CILK

// export CILK_NWORKERS=<num>
/*!
* Utility function to get/set the number of threads.
*
* The number of threads are controlled via environment variable \c CILK_NWORKERS
*
* \return The number of threads used.
* \note
* The user can reduce the number with the command option \c --max_threads.
* If so the requested number will be used even if the environment has more threads available.
*/
int nworkers() {
if (session.max_threads)
return (session.max_threads < __cilkrts_get_nworkers()) ?
@@ -33,45 +30,93 @@ int nworkers() {
return __cilkrts_get_nworkers();
}

/*!
* Calculate and return a vertex-wise count vector.
*
* \param A The matrix to use.
* \return The count vector. RVO is used here.
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
*/
std::vector<value_t> triang_v(matrix& A) {
std::vector<value_t> c(A.size());
std::vector<std::atomic<value_t>> c(A.size());
std::vector<value_t> ret(A.size());

cilk_for (int i=0 ; i<A.size() ; ++i) {
for (auto j = A.getCol(i); j.index() != j.end() ; ++j) // j list all the edges with i
for (auto k = A.getCol(j.index()); k.index() != k.end() ; ++k) // k list all the edges with j
if (A.get(k.index(), i)) // search for i-k edge
++c[i];
for (auto j = A.getCol(i); j.index() != j.end() ; ++j) {
// j list all the edges with i
for (auto k = A.getCol(j.index()); k.index() != k.end() ; ++k) {
// k list all the edges with j
if (A.get(k.index(), i)) {
++ret[i];
c[j.index()] += (!session.makeSymmetric)? 1:0;
c[k.index()] += (!session.makeSymmetric)? 1:0;
}
}
}
if (session.makeSymmetric) {
ret[i] = ret[i]/2;
c[i] = c[i]/2;
}
}
if (session.makeSymmetric)
std::transform (c.begin(), c.end(), c.begin(), [] (value_t& x) {
return x/2;
});
return c;
for (index_t i =0 ; i<A.size() ; ++i) ret[i] += c[i];
return ret;
}

/*!
* A sum utility to use as spawn function for parallelized sum.
* \return The sum of \c v from \c begin to \c end.
*/
void do_sum (value_t& out_sum, std::vector<value_t>& v, index_t begin, index_t end) {
for (auto i =begin ; i != end ; ++i)
out_sum += v[i];
}

/*!
* A parallelized version of sum. Just because ;)
* \return The total sum of vector \c v
*/
value_t sum (std::vector<value_t>& v) {
int n = nworkers();
std::vector<value_t> sum_v(n, 0);
std::vector<value_t> sum_v(n, 0); // result of each do_sum invokation.

// We spawn workers in a more statically way.
for (index_t i =0 ; i < n ; ++i) {
cilk_spawn do_sum(sum_v[i], v, i*v.size()/n, (i+1)*v.size()/n);
}
cilk_sync;

value_t s =0;
for (auto& it : sum_v) s += it;
// sum the sums (a sum to rule them all)
value_t s =0; for (auto& it : sum_v) s += it;
return s;
}

#elif defined OMP

/*
// export OMP_NUM_THREADS=<num>
/*!
* A "simple" user defined OpenMP reduction for vector<value_t>
* \note
* Not used. Reason: The atomic version of the code performs better.
*/
#pragma omp declare reduction(vec_value_plus : std::vector<value_t> : \
std::transform( \
omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<value_t>() \
) \
) \
initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))


/*!
* Utility function to get/set the number of threads.
*
* The number of threads are controlled via environment variable \c OMP_NUM_THREADS
*
* \return The number of threads used.
* \note
* The user can reduce the number with the command option \c --max_threads.
* If so the requested number will be used even if the environment has more threads available.
*/
int nworkers() {
if (session.max_threads && session.max_threads < (size_t)omp_get_max_threads()) {
@@ -85,23 +130,49 @@ int nworkers() {
}
}

/*!
* Calculate and return a vertex-wise count vector.
*
* \param A The matrix to use.
* \return The count vector. RVO is used here.
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
*/
std::vector<value_t> triang_v(matrix& A) {
std::vector<value_t> c(A.size());
std::vector<std::atomic<value_t>> c(A.size());
std::vector<value_t> ret(A.size());

#pragma omp parallel for shared(c)
// OMP schedule selection
if (session.dynamic) omp_set_schedule (omp_sched_dynamic, 0);
else omp_set_schedule (omp_sched_static, 0);
#pragma omp parallel for schedule(runtime) //reduction(vec_value_plus : c)
for (int i=0 ; i<A.size() ; ++i) {
for (auto j = A.getCol(i); j.index() != j.end() ; ++j) // j list all the edges with i
for (auto k = A.getCol(j.index()); k.index() != k.end() ; ++k) // k list all the edges with j
if (A.get(k.index(), i)) // search for i-k edge
++c[i];
for (auto j = A.getCol(i); j.index() != j.end() ; ++j) {
// j list all the edges with i
for (auto k = A.getCol(j.index()); k.index() != k.end() ; ++k) {
// k list all the edges with j
if (A.get(k.index(), i)) {
++ret[i];
c[j.index()] += (!session.makeSymmetric)? 1:0;
c[k.index()] += (!session.makeSymmetric)? 1:0;
}
}
}
if (session.makeSymmetric) {
ret[i] = ret[i]/2;
c[i] = c[i]/2;
}
}
if (session.makeSymmetric)
std::transform (c.begin(), c.end(), c.begin(), [] (value_t& x) {
return x/2;
});
return c;
for (index_t i =0 ; i<A.size() ; ++i) ret[i] += c[i];
return ret;
}

/*!
* A parallelized version of sum. Just because ;)
* \return The total sum of vector \c v
*/
value_t sum (std::vector<value_t>& v) {
value_t s =0;

@@ -113,24 +184,44 @@ value_t sum (std::vector<value_t>& v) {

#else

//! Return the number of workers.
//! \note This function is just for completion
int nworkers() { return 1; }

/*!
* Calculate and return a vertex-wise count vector.
*
* \param A The matrix to use.
* \return The count vector. RVO is used here.
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
*/
std::vector<value_t> triang_v(matrix& A) {
std::vector<value_t> c(A.size());

for (int i=0 ; i<A.size() ; ++i) {
for (auto j = A.getCol(i); j.index() != j.end() ; ++j) // j list all the edges with i
for (auto k = A.getCol(j.index()); k.index() != k.end() ; ++k) // k list all the edges with j
if (A.get(k.index(), i)) // search for i-k edge
for (auto j = A.getCol(i); j.index() != j.end() ; ++j) {
// j list all the edges with i
for (auto k = A.getCol(j.index()); k.index() != k.end() ; ++k) {
// k list all the edges with j
if (A.get(k.index(), i)) {
++c[i];
c[j.index()] += (!session.makeSymmetric)? 1:0;
c[k.index()] += (!session.makeSymmetric)? 1:0;
}
}
}
if (session.makeSymmetric) c[i] /= 2;
}
if (session.makeSymmetric)
std::transform (c.begin(), c.end(), c.begin(), [] (value_t& x) {
return x/2;
});
return c;
}

/*!
* Summation functionality.
* \return The total sum of vector \c v
*/
value_t sum (std::vector<value_t>& v) {
value_t s =0;
for (auto& it : v)
@@ -140,9 +231,9 @@ value_t sum (std::vector<value_t>& v) {

#endif

//! Polymorphic interface function for sum results
value_t triang_count (std::vector<value_t>& c) {
return (session.makeSymmetric) ? sum(c)/3 : sum(c);
return sum(c)/3;
}

}

+ 174
- 33
src/v4.cpp View File

@@ -12,7 +12,16 @@ namespace v4 {

#if defined CILK

// export CILK_NWORKERS=<num>
/*!
* Utility function to get/set the number of threads.
*
* The number of threads are controlled via environment variable \c CILK_NWORKERS
*
* \return The number of threads used.
* \note
* The user can reduce the number with the command option \c --max_threads.
* If so the requested number will be used even if the environment has more threads available.
*/
int nworkers() {
if (session.max_threads)
return (session.max_threads < __cilkrts_get_nworkers()) ?
@@ -21,6 +30,25 @@ int nworkers() {
return __cilkrts_get_nworkers();
}

/*!
* Calculate and return a vertex-wise count vector.
*
* 1
* vector = --- * (A.* (A*B))*ones_N
* 2
* We squeezed all that to one function for performance. The row*column multiplication
* uses the inner CSC structure of sparse matrix and follows only non-zero members.
*
* \param A The first matrix to use.
* \param B The second matrix to use (they can be the same).
* \return The count vector. RVO is used here.
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/
std::vector<value_t> mmacc_v(matrix& A, matrix& B) {
std::vector<value_t> c(A.size());

@@ -28,37 +56,50 @@ std::vector<value_t> mmacc_v(matrix& A, matrix& B) {
for (auto j = A.getRow(i); j.index() != j.end() ; ++j){
c[i] += A.getRow(i)*B.getCol(j.index());
}
if (session.makeSymmetric) c[i] /= 2;
}
if (session.makeSymmetric)
std::transform (c.begin(), c.end(), c.begin(), [] (value_t& x) {
return x/2;
});
return c;
}

/*!
* A sum utility to use as spawn function for parallelized sum.
* \return The sum of \c v from \c begin to \c end.
*/
void do_sum (value_t& out_sum, std::vector<value_t>& v, index_t begin, index_t end) {
for (auto i =begin ; i != end ; ++i)
out_sum += v[i];
}

/*!
* A parallelized version of sum. Just because ;)
* \return The total sum of vector \c v
*/
value_t sum (std::vector<value_t>& v) {
int n = nworkers();
std::vector<value_t> sum_v(n, 0);
std::vector<value_t> sum_v(n, 0); // result of each do_sum invokation.

// We spawn workers in a more statically way.
for (index_t i =0 ; i < n ; ++i) {
cilk_spawn do_sum(sum_v[i], v, i*v.size()/n, (i+1)*v.size()/n);
}
cilk_sync;

value_t s =0;
for (auto& it : sum_v) s += it;
// sum the sums (a sum to rule them all)
value_t s =0; for (auto& it : sum_v) s += it;
return s;
}

#elif defined OMP

/*
// export OMP_NUM_THREADS=<num>
/*!
* Utility function to get/set the number of threads.
*
* The number of threads are controlled via environment variable \c OMP_NUM_THREADS
*
* \return The number of threads used.
* \note
* The user can reduce the number with the command option \c --max_threads.
* If so the requested number will be used even if the environment has more threads available.
*/
int nworkers() {
if (session.max_threads && session.max_threads < (size_t)omp_get_max_threads()) {
@@ -72,22 +113,45 @@ int nworkers() {
}
}

/*!
* Calculate and return a vertex-wise count vector.
*
* 1
* vector = --- * (A.* (A*B))*ones_N
* 2
* We squeezed all that to one function for performance. The row*column multiplication
* uses the inner CSC structure of sparse matrix and follows only non-zero members.
*
* \param A The first matrix to use.
* \param B The second matrix to use (they can be the same).
* \return The count vector. RVO is used here.
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/
std::vector<value_t> mmacc_v(matrix& A, matrix& B) {
std::vector<value_t> c(A.size());

#pragma omp parallel for shared(c)
// OMP schedule selection
if (session.dynamic) omp_set_schedule (omp_sched_dynamic, 0);
else omp_set_schedule (omp_sched_static, 0);
#pragma omp parallel for shared(c) schedule(runtime)
for (int i=0 ; i<A.size() ; ++i) {
for (auto j = A.getRow(i); j.index() != j.end() ; ++j) {
c[i] += A.getRow(i)*B.getCol(j.index());
}
if (session.makeSymmetric) c[i] /= 2;
}
if (session.makeSymmetric)
std::transform (c.begin(), c.end(), c.begin(), [] (value_t& x) {
return x/2;
});
return c;
}

/*!
* A parallelized version of sum. Just because ;)
* \return The total sum of vector \c v
*/
value_t sum (std::vector<value_t>& v) {
value_t s =0;

@@ -99,8 +163,15 @@ value_t sum (std::vector<value_t>& v) {

#elif defined THREADS

/*
* std::thread::hardware_concurrency()
/*!
* Utility function to get/set the number of threads.
*
* The number of threads are inherited by the environment via std::thread::hardware_concurrency()
*
* \return The number of threads used.
* \note
* The user can reduce the number with the command option \c --max_threads.
* If so the requested number will be used even if the environment has more threads available.
*/
int nworkers() {
if (session.max_threads)
@@ -110,43 +181,89 @@ int nworkers() {
return std::thread::hardware_concurrency();
}

std::vector<value_t> mmacc_v_rng(std::vector<value_t>& out, matrix& A, matrix& B, index_t begin, index_t end) {
/*!
* A spawn function to calculate and return a vertex-wise count vector.
*
* 1
* vector(begin..end) = --- * (A.* (A*B))*ones_N
* 2
*
* We squeezed all that to one function for performance. The row*column multiplication
* uses the inner CSC structure of sparse matrix and follows only non-zero members.
*
* \param out Reference to output vector
* \param A The first matrix to use.
* \param B The second matrix to use (they can be the same).
* \param iton vector containing the range with the columns to use (it can be shuffled).
* \return The count vector. RVO is used here.
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/
std::vector<value_t> mmacc_v_rng(
std::vector<value_t>& out, matrix& A, matrix& B, std::vector<index_t>& iton, index_t begin, index_t end) {
for (index_t i=begin ; i<end ; ++i) {
for (auto j = A.getRow(i); j.index() != j.end() ; ++j){
out[i] += A.getRow(i)*B.getCol(j.index());
index_t ii = iton[i];
for (auto j = A.getRow(ii); j.index() != j.end() ; ++j){
out[ii] += A.getRow(ii)*B.getCol(j.index());
}
if (session.makeSymmetric) out[ii] /= 2;
}
return out;
}

/*!
* Calculate and return a vertex-wise count vector.
*
* \param A The first matrix to use.
* \param B The second matrix to use (they can be the same).
* \return The count vector. RVO is used here.
*/
std::vector<value_t> mmacc_v(matrix& A, matrix& B) {
std::vector<std::thread> workers;
std::vector<value_t> c(A.size());
int n = nworkers();

for (index_t i=0 ; i<n ; ++i)
workers.push_back (std::thread (mmacc_v_rng, std::ref(c), std::ref(A), std::ref(B), i*c.size()/n, (i+1)*c.size()/n));
std::vector<index_t> iton(A.size()); // Create a 0 .. N range for outer loop
std::iota(iton.begin(), iton.end(), 0);
if (session.dynamic) // in case of dynamic scheduling, shuffle the range
std::shuffle(iton.begin(), iton.end(), std::mt19937{std::random_device{}()});

for (index_t i=0 ; i<n ; ++i) // dispatch the workers and hold them in a vector
workers.push_back (
std::thread (mmacc_v_rng, std::ref(c), std::ref(A), std::ref(B), std::ref(iton), i*A.size()/n, (i+1)*A.size()/n)
);

// a for to join them all...
std::for_each(workers.begin(), workers.end(), [](std::thread& t){
t.join();
});
if (session.makeSymmetric)
std::transform (c.begin(), c.end(), c.begin(), [] (value_t& x) {
return x/2;
});

return c;
}

/*!
* A sum utility to use as spawn function for parallelized sum.
* \return The sum of \c v from \c begin to \c end.
*/
void do_sum (value_t& out_sum, std::vector<value_t>& v, index_t begin, index_t end) {
for (auto i =begin ; i != end ; ++i)
out_sum += v[i];
}

/*!
* A parallelized version of sum. Just because ;)
* \return The total sum of vector \c v
*/
value_t sum (std::vector<value_t>& v) {
int n = nworkers();
std::vector<value_t> sum_v(n, 0);
std::vector<value_t> sum_v(n, 0); // result of each do_sum invokation.
std::vector<std::thread> workers;

// We spawn workers in a more statically way.
for (index_t i =0 ; i < n ; ++i)
workers.push_back (std::thread (do_sum, std::ref(sum_v[i]), std::ref(v), i*v.size()/n, (i+1)*v.size()/n));

@@ -154,29 +271,51 @@ value_t sum (std::vector<value_t>& v) {
t.join();
});

value_t s =0;
for (auto& it : sum_v) s += it;
// sum the sums (a sum to rule them all)
value_t s =0; for (auto& it : sum_v) s += it;
return s;
}

#else

//! Return the number of workers.
//! \note This function is just for completion
int nworkers() { return 1; }

/*!
* Calculate and return a vertex-wise count vector.
*
* 1
* vector = --- * (A.* (A*B))*ones_N
* 2
* We squeezed all that to one function for performance. The row*column multiplication
* uses the inner CSC structure of sparse matrix and follows only non-zero members.
*
* \param A The first matrix to use.
* \param B The second matrix to use (they can be the same).
* \return The count vector. RVO is used here.
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/
std::vector<value_t> mmacc_v(matrix& A, matrix& B) {
std::vector<value_t> c(A.size());
for (int i=0 ; i<A.size() ; ++i) {
for (auto j = A.getRow(i); j.index() != j.end() ; ++j){
c[i] += A.getRow(i)*B.getCol(j.index());
}
if (session.makeSymmetric) c[i] /= 2;
}
if (session.makeSymmetric)
std::transform (c.begin(), c.end(), c.begin(), [] (value_t& x) {
return x/2;
});
return c;
}

/*!
* Summation functionality.
* \return The total sum of vector \c v
*/
value_t sum (std::vector<value_t>& v) {
value_t s =0;
for (auto& it : v)
@@ -186,10 +325,12 @@ value_t sum (std::vector<value_t>& v) {

#endif

//! Polymorphic interface function for count vector
std::vector<value_t> triang_v(matrix& A) {
return mmacc_v(A, A);
}

//! Polymorphic interface function for sum results
value_t triang_count (std::vector<value_t>& c) {
return (session.makeSymmetric) ? sum(c)/3 : sum(c);
}


Loading…
Cancel
Save