Christos Choutouridis 4 роки тому
джерело
коміт
377d37d512
6 змінених файлів з 19 додано та 18 видалено
  1. +9
    -9
      inc/impl.hpp
  2. +2
    -2
      inc/utils.h
  3. +1
    -0
      src/elearn.cpp
  4. +1
    -1
      src/main.cpp
  5. +2
    -2
      src/v3.cpp
  6. +4
    -4
      src/v4.cpp

+ 9
- 9
inc/impl.hpp Переглянути файл

@@ -48,7 +48,7 @@ template<typename DataType, typename IndexType> struct SpMatRow;
template<typename DataType, typename IndexType> struct SpMatVal;

/*!
* 2D-array wrapper for v1 and v2 part of the exercise t use as RAII
* 2D-array wrapper for v1 and v2 part of the exercise used as RAII
* and copy-prevention.
*
* This is a very thin abstraction layer over a native array.
@@ -180,7 +180,7 @@ Matrix<DataType, IndexType, Type> make_Matrix(IndexType s) {
* A(3, 4) = 7;
* \endcode
*
* We also provide getCol() and getRow() functions witch return a viwer/iterator to rows and
* We also provide getCol() and getRow() functions witch return a viewer/iterator to rows and
* columns of the matrix. In the case of a symmetric matrix instead of a row we return the
* equivalent column. This way we gain speed due to CSC format nature.
*
@@ -290,15 +290,15 @@ struct SpMat {
}

/*!
* A read item functionality using binary search to find the correct row
* A read item functionality using linear search to find the correct row
*
* @param i The row number
* @param j The column number
* @return The value of the item or DataType{} if is not present.
*/
DataType get2(IndexType i, IndexType j) {
DataType get_lin(IndexType i, IndexType j) {
IndexType idx; bool found;
std::tie(idx, found) =find2_idx(rows, col_ptr[j], col_ptr[j+1], i);
std::tie(idx, found) =find_lin_idx(rows, col_ptr[j], col_ptr[j+1], i);
return (found) ? values[idx] : 0;
}

@@ -318,7 +318,7 @@ struct SpMat {
*/
DataType set(DataType v, IndexType i, IndexType j) {
IndexType idx; bool found;
std::tie(idx, found) = find2_idx(rows, col_ptr[j], col_ptr[j+1], i);
std::tie(idx, found) = find_lin_idx(rows, col_ptr[j], col_ptr[j+1], i);
if (found)
return values[idx] = v; // we don't change NNZ even if we write "0"
else {
@@ -402,10 +402,10 @@ private:
else if (b >= e) return std::make_pair(end, false);
else {
if (v[m] < match) b = m +1;
else e = m -1;
else e = m -1;
}
}
return std::make_pair(end, false);;
return std::make_pair(end, false);
}
/*!
* find helper for set using index for begin-end instead of iterators.
@@ -418,7 +418,7 @@ private:
* \param end The vector's index to end
* \param match What to search
*/
std::pair<IndexType, bool> find2_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) {
std::pair<IndexType, bool> find_lin_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) {
for ( ; begin < end ; ++begin) {
if (match == v[begin]) return std::make_pair(begin, true);
else if (match < v[begin]) return std::make_pair(begin, false);


+ 2
- 2
inc/utils.h Переглянути файл

@@ -223,10 +223,10 @@ private:
};

/*!
* A Logger for entire programm.
* A Logger for entire program.
*/
struct Log {
struct Endl {} endl; //!< a tag objec to to use it as a new line request.
struct Endl {} endl; //!< a tag object to to use it as a new line request.

//! We provide logging via << operator
template<typename T>


+ 1
- 0
src/elearn.cpp Переглянути файл

@@ -86,6 +86,7 @@ uint32_t* vertexWiseTriangleCounts (uint32_t *coo_row, uint32_t *coo_col, uint32
// convert input
coo2csc_e (R, C, coo_row, coo_col, nz, n, 1);

// we use the lower triangular optimization just because ;)
for (uint32_t i=0 ; i<n ; ++i) {
for (uint32_t j = C[i]; j<C[i+1] ; ++j) {
uint32_t j_idx = R[j];


+ 1
- 1
src/main.cpp Переглянути файл

@@ -127,7 +127,7 @@ bool get_options(int argc, char* argv[]){

// Input checkers
if (session.inputMatrix == InputMatrix::UNSPECIFIED) {
std::cout << "Error message\n";
std::cout << "Invokation error. Try -h for details.\n";
status = false;
}
#if CODE_VERSION == V4


+ 2
- 2
src/v3.cpp Переглянути файл

@@ -138,7 +138,7 @@ int nworkers() {
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster.
*/
std::vector<value_t> triang_v(matrix& A) {
std::vector<std::atomic<value_t>> c(A.size());
@@ -196,7 +196,7 @@ int nworkers() { return 1; }
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster.
*/
std::vector<value_t> triang_v(matrix& A) {
std::vector<value_t> c(A.size());


+ 4
- 4
src/v4.cpp Переглянути файл

@@ -45,7 +45,7 @@ int nworkers() {
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/
@@ -128,7 +128,7 @@ int nworkers() {
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/
@@ -199,7 +199,7 @@ int nworkers() {
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/
@@ -297,7 +297,7 @@ int nworkers() { return 1; }
* \note
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only
* - A full matrix calculation which update only c[i]
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster.
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster.
* \warning
* The later(--triangular_only) produce correct results ONLY if we are after the total count.
*/


Завантаження…
Відмінити
Зберегти