@@ -236,7 +236,9 @@ v4_pthreads: $(BUILD_DIR)/$(TARGET) | |||
# > make clean | |||
# 3) for v4 cilk for example: | |||
# > make csal_v4_cilk | |||
# 4) run executables from `bin/` | |||
# 4) run executables from `bin/`. Examples: | |||
# > ./bin/tcount_ompv3 -i mtx/NACA0015.mtx --timing -r 3 -o /dev/null | |||
# > ./bin/tcount_pthv4 -i mtx/com_Youtube.mtx --timing --dynamic --print_count | |||
csal_v3: CFLAGS := $(REL_CFLAGS) -DCODE_VERSION=3 | |||
csal_v3: TARGET := tcount_v3 | |||
@@ -22,7 +22,7 @@ | |||
#define V3 3 | |||
#define V4 4 | |||
// Fail-safe verision selection | |||
// Fail-safe version selection | |||
#if !defined CODE_VERSION | |||
#define CODE_VERSION V4 | |||
#endif | |||
@@ -39,7 +39,7 @@ enum class MatrixType { | |||
}; | |||
/* | |||
* Forward type declerations | |||
* Forward type declarations | |||
*/ | |||
template<typename DataType, typename IndexType, MatrixType Type = MatrixType::SYMMETRIC> struct Matrix; | |||
template<typename DataType, typename IndexType, MatrixType Type = MatrixType::SYMMETRIC> struct SpMat; | |||
@@ -298,7 +298,7 @@ struct SpMat { | |||
*/ | |||
DataType get_lin(IndexType i, IndexType j) { | |||
IndexType idx; bool found; | |||
std::tie(idx, found) =find_lin_idx(rows, col_ptr[j], col_ptr[j+1], i); | |||
std::tie(idx, found) =find_place_idx(rows, col_ptr[j], col_ptr[j+1], i); | |||
return (found) ? values[idx] : 0; | |||
} | |||
@@ -309,8 +309,9 @@ struct SpMat { | |||
* If so we just change it to a new value. If not we add the item on the matrix. | |||
* | |||
* @note | |||
* We don't increase the NNZ value of the struct. We expect the user has already | |||
* change the NNZ value to the right one using @see capacity() function. | |||
* When change a value, we don't increase the NNZ value of the struct. We expect the user has already | |||
* change the NNZ value to the right one using @see capacity() function. When adding a value we | |||
* increase the NNZ. | |||
* | |||
* @param i The row number | |||
* @param j The column number | |||
@@ -318,7 +319,7 @@ struct SpMat { | |||
*/ | |||
DataType set(DataType v, IndexType i, IndexType j) { | |||
IndexType idx; bool found; | |||
std::tie(idx, found) = find_lin_idx(rows, col_ptr[j], col_ptr[j+1], i); | |||
std::tie(idx, found) = find_place_idx(rows, col_ptr[j], col_ptr[j+1], i); | |||
if (found) | |||
return values[idx] = v; // we don't change NNZ even if we write "0" | |||
else { | |||
@@ -392,11 +393,13 @@ private: | |||
* \param begin The vector's index to begin | |||
* \param end The vector's index to end | |||
* \param match What to search | |||
* @return The index of the item or end on failure. | |||
* \return An <index, status> pair. | |||
* index is the index of the item or end if not found | |||
* status is true if found, false otherwise | |||
*/ | |||
std::pair<IndexType, bool> find_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) { | |||
IndexType b = begin, e = end-1; | |||
while (true) { | |||
while (b <= e) { | |||
IndexType m = (b+e)/2; | |||
if (v[m] == match) return std::make_pair(m, true); | |||
else if (b >= e) return std::make_pair(end, false); | |||
@@ -417,8 +420,11 @@ private: | |||
* \param begin The vector's index to begin | |||
* \param end The vector's index to end | |||
* \param match What to search | |||
* \return An <index, status> pair. | |||
* index is the index of the item or end if not found | |||
* status is true if found, false otherwise | |||
*/ | |||
std::pair<IndexType, bool> find_lin_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) { | |||
std::pair<IndexType, bool> find_place_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) { | |||
for ( ; begin < end ; ++begin) { | |||
if (match == v[begin]) return std::make_pair(begin, true); | |||
else if (match < v[begin]) return std::make_pair(begin, false); | |||
@@ -437,7 +443,7 @@ private: | |||
//! @{ | |||
std::vector<DataType> values {}; //!< vector to store the values of the matrix | |||
std::vector<IndexType> rows{}; //!< vector to store the row information | |||
std::vector<IndexType> col_ptr{1,0}; //!< vector to stor the column pointers | |||
std::vector<IndexType> col_ptr{1,0}; //!< vector to store the column pointers | |||
IndexType N{0}; //!< The dimension of the matrix (square) | |||
IndexType NNZ{0}; //!< The NNZ (capacity of the matrix) | |||
//! @} | |||
@@ -496,20 +502,25 @@ struct SpMatCol { | |||
/*! | |||
* Multiplication operator | |||
* | |||
* We follow only the non-zero values and multiply only the common indexes. | |||
* | |||
* @tparam C Universal reference for the type right half site column | |||
* | |||
* @param c The right hand site matrix | |||
* @return The value of the inner product of two vectors | |||
* @note The time complexity is \$ O(nnz1+nnz2) \$. | |||
* Where the nnz is the max NNZ elements of the column of the matrix | |||
*/ | |||
template <typename C> | |||
DataType operator* (C&& c) { | |||
static_assert(std::is_same<remove_cvref_t<C>, SpMatCol<DataType, IndexType>>(), ""); | |||
DataType v{}; | |||
while (index() != end() && c.index() != c.end()) { | |||
if (index() < c.index()) advance(); | |||
else if (index() > c.index()) ++c; | |||
if (index() < c.index()) advance(); // advance me | |||
else if (index() > c.index()) ++c; // advance other | |||
else { //index() == c.index() | |||
v += get() * *c; | |||
v += get() * *c; // multiply and advance both | |||
++c; | |||
advance(); | |||
} | |||
@@ -597,20 +608,25 @@ struct SpMatRow { | |||
/*! | |||
* Multiplication operator | |||
* | |||
* We follow only the non-zero values and multiply only the common indexes. | |||
* | |||
* @tparam C Universal reference for the type right half site column | |||
* | |||
* @param c The right hand site matrix | |||
* @return The value of the inner product of two vectors | |||
* @note The time complexity is \$ O(N+nnz2) \$ and way heavier the ColxCol multiplication. | |||
* Where the nnz is the max NNZ elements of the column of the matrix | |||
*/ | |||
template <typename C> | |||
DataType operator* (C&& c) { | |||
static_assert(std::is_same<remove_cvref_t<C>, SpMatCol<DataType, IndexType>>(), ""); | |||
DataType v{}; | |||
while (index() != end() && c.index() != c.end()) { | |||
if (index() < c.index()) advance(); | |||
else if (index() > c.index()) ++c; | |||
if (index() < c.index()) advance(); // advance me | |||
else if (index() > c.index()) ++c; // advance other | |||
else { //index() == c.index() | |||
v += get()* *c; | |||
v += get() * *c; // multiply and advance both | |||
++c; | |||
advance(); | |||
} | |||
@@ -51,7 +51,7 @@ static void coo2csc_e( | |||
*/ | |||
uint32_t find_idx(const uint32_t* v, uint32_t begin, uint32_t end, uint32_t match) { | |||
uint32_t b = begin, e = end-1; | |||
while (1) { | |||
while (b <= e) { | |||
uint32_t m = (b+e)/2; | |||
if (v[m] == match) return m; | |||
else if (b >= e) return end; | |||
@@ -116,18 +116,25 @@ bool get_options(int argc, char* argv[]){ | |||
std::cout << " --print_graph <size>\n"; | |||
std::cout << " Prints the first <size> x <size> part of the matrix to stdout.\n\n"; | |||
std::cout << " -h | --help <size>\n"; | |||
std::cout << " Prints this and exit.\n"; | |||
std::cout << " Prints this and exit.\n\n"; | |||
std::cout << "Examples:\n\n"; | |||
std::cout << " Get the total count of matrix in <MFILE> and calculate the time for vector creation 5 times:\n"; | |||
std::cout << " > ./tcount -i <MFILE> --timing --print_count -r 5\n\n"; | |||
std::cout << " Get the vector to <OUTFILE> of matrix in <MFILE> and print the time to stdout using dynamic scheduling\n"; | |||
std::cout << " > ./tcount -i <MFILE> -o <OUTFILE> --timing --dynamic\n\n"; | |||
std::cout << " Get the total count of matrix in <MFILE> using <N> workers only\n"; | |||
std::cout << " > ./tcount -i <MFILE> -n <N> --print_count\n"; | |||
exit(0); | |||
} | |||
else { // parse error | |||
std::cout << "Invokation error. Try -h for details.\n"; | |||
std::cout << "Invocation error. Try -h for details.\n"; | |||
status = false; | |||
} | |||
} | |||
// Input checkers | |||
if (session.inputMatrix == InputMatrix::UNSPECIFIED) { | |||
std::cout << "Invokation error. Try -h for details.\n"; | |||
std::cout << "Invocation error. Try -h for details.\n"; | |||
status = false; | |||
} | |||
#if CODE_VERSION == V4 | |||
@@ -166,7 +173,7 @@ void prepare_matrix (matrix& A, Timing& timer) { | |||
timer.print_dt("load matrix"); | |||
} | |||
if (session.verbose && session.mtx_print) { | |||
if (session.mtx_print) { | |||
logger << "\nMatrix:" << logger.endl; | |||
print_graph (A); | |||
} | |||
@@ -41,8 +41,8 @@ int nworkers() { | |||
* - A lower triangular matrix which update c[i], c[j], c[k]. This is wayyy faster. | |||
*/ | |||
std::vector<value_t> triang_v(matrix& A) { | |||
std::vector<std::atomic<value_t>> c(A.size()); | |||
std::vector<value_t> ret(A.size()); | |||
std::vector<std::atomic<value_t>> c(A.size()); // atomic for c[j], c[k] only | |||
std::vector<value_t> ret(A.size()); // unrestricted c[i] access | |||
cilk_for (int i=0 ; i<A.size() ; ++i) { | |||
for (auto j = A.getCol(i); j.index() != j.end() ; ++j) { | |||
@@ -61,6 +61,7 @@ std::vector<value_t> triang_v(matrix& A) { | |||
c[i] = c[i]/2; | |||
} | |||
} | |||
// merge c to ret and return it | |||
for (index_t i =0 ; i<A.size() ; ++i) ret[i] += c[i]; | |||
return ret; | |||
} | |||
@@ -80,7 +81,7 @@ void do_sum (value_t& out_sum, std::vector<value_t>& v, index_t begin, index_t e | |||
*/ | |||
value_t sum (std::vector<value_t>& v) { | |||
int n = nworkers(); | |||
std::vector<value_t> sum_v(n, 0); // result of each do_sum invokation. | |||
std::vector<value_t> sum_v(n, 0); // result of each do_sum invocation. | |||
// We spawn workers in a more statically way. | |||
for (index_t i =0 ; i < n ; ++i) { | |||
@@ -141,8 +142,8 @@ int nworkers() { | |||
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster. | |||
*/ | |||
std::vector<value_t> triang_v(matrix& A) { | |||
std::vector<std::atomic<value_t>> c(A.size()); | |||
std::vector<value_t> ret(A.size()); | |||
std::vector<std::atomic<value_t>> c(A.size()); // atomic for c[j], c[k] only | |||
std::vector<value_t> ret(A.size()); // unrestricted c[i] access | |||
// OMP schedule selection | |||
if (session.dynamic) omp_set_schedule (omp_sched_dynamic, 0); | |||
@@ -165,6 +166,7 @@ std::vector<value_t> triang_v(matrix& A) { | |||
c[i] = c[i]/2; | |||
} | |||
} | |||
// merge c to ret and return it | |||
for (index_t i =0 ; i<A.size() ; ++i) ret[i] += c[i]; | |||
return ret; | |||
} | |||
@@ -210,10 +212,12 @@ std::vector<value_t> triang_v(matrix& A) { | |||
++c[i]; | |||
c[j.index()] += (!session.makeSymmetric)? 1:0; | |||
c[k.index()] += (!session.makeSymmetric)? 1:0; | |||
//^ We set other nodes in case of lower triangular | |||
} | |||
} | |||
} | |||
if (session.makeSymmetric) c[i] /= 2; | |||
//^ We don't have to divide by 2 in case of lower triangular | |||
} | |||
return c; | |||
} | |||
@@ -37,15 +37,16 @@ int nworkers() { | |||
* vector = --- * (A.* (A*B))*ones_N | |||
* 2 | |||
* We squeezed all that to one function for performance. The row*column multiplication | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members. | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members | |||
* with a time complexity of \$ O(nnz1 + nnz2) \$ | |||
* | |||
* \param A The first matrix to use. | |||
* \param B The second matrix to use (they can be the same). | |||
* \return The count vector. RVO is used here. | |||
* \note | |||
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only | |||
* - A full matrix calculation which update only c[i] | |||
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster. | |||
* - A full matrix calculation | |||
* - A lower triangular matrix | |||
* \warning | |||
* The later(--triangular_only) produce correct results ONLY if we are after the total count. | |||
*/ | |||
@@ -76,7 +77,7 @@ void do_sum (value_t& out_sum, std::vector<value_t>& v, index_t begin, index_t e | |||
*/ | |||
value_t sum (std::vector<value_t>& v) { | |||
int n = nworkers(); | |||
std::vector<value_t> sum_v(n, 0); // result of each do_sum invokation. | |||
std::vector<value_t> sum_v(n, 0); // result of each do_sum invocation. | |||
// We spawn workers in a more statically way. | |||
for (index_t i =0 ; i < n ; ++i) { | |||
@@ -120,15 +121,16 @@ int nworkers() { | |||
* vector = --- * (A.* (A*B))*ones_N | |||
* 2 | |||
* We squeezed all that to one function for performance. The row*column multiplication | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members. | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members | |||
* with a time complexity of \$ O(nnz1 + nnz2) \$ | |||
* | |||
* \param A The first matrix to use. | |||
* \param B The second matrix to use (they can be the same). | |||
* \return The count vector. RVO is used here. | |||
* \note | |||
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only | |||
* - A full matrix calculation which update only c[i] | |||
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster. | |||
* - A full matrix calculation | |||
* - A lower triangular matrix | |||
* \warning | |||
* The later(--triangular_only) produce correct results ONLY if we are after the total count. | |||
*/ | |||
@@ -189,7 +191,8 @@ int nworkers() { | |||
* 2 | |||
* | |||
* We squeezed all that to one function for performance. The row*column multiplication | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members. | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members | |||
* with a time complexity of \$ O(nnz1 + nnz2) \$ | |||
* | |||
* \param out Reference to output vector | |||
* \param A The first matrix to use. | |||
@@ -198,8 +201,8 @@ int nworkers() { | |||
* \return The count vector. RVO is used here. | |||
* \note | |||
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only | |||
* - A full matrix calculation which update only c[i] | |||
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster. | |||
* - A full matrix calculation | |||
* - A lower triangular matrix | |||
* \warning | |||
* The later(--triangular_only) produce correct results ONLY if we are after the total count. | |||
*/ | |||
@@ -260,7 +263,7 @@ void do_sum (value_t& out_sum, std::vector<value_t>& v, index_t begin, index_t e | |||
*/ | |||
value_t sum (std::vector<value_t>& v) { | |||
int n = nworkers(); | |||
std::vector<value_t> sum_v(n, 0); // result of each do_sum invokation. | |||
std::vector<value_t> sum_v(n, 0); // result of each do_sum invocation. | |||
std::vector<std::thread> workers; | |||
// We spawn workers in a more statically way. | |||
@@ -288,16 +291,18 @@ int nworkers() { return 1; } | |||
* 1 | |||
* vector = --- * (A.* (A*B))*ones_N | |||
* 2 | |||
* | |||
* We squeezed all that to one function for performance. The row*column multiplication | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members. | |||
* uses the inner CSC structure of sparse matrix and follows only non-zero members | |||
* with a time complexity of \$ O(nnz1 + nnz2) \$ | |||
* | |||
* \param A The first matrix to use. | |||
* \param B The second matrix to use (they can be the same). | |||
* \return The count vector. RVO is used here. | |||
* \note | |||
* We use two methods of calculation based on \c --make_symmetric or \c --triangular_only | |||
* - A full matrix calculation which update only c[i] | |||
* - A lower triangular matrix which update c[i], c[j], c[k]. This is waaayyy faster. | |||
* - A full matrix calculation | |||
* - A lower triangular matrix | |||
* \warning | |||
* The later(--triangular_only) produce correct results ONLY if we are after the total count. | |||
*/ | |||