AUTH's THMMY "Parallel and distributed systems" course assignments.
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.
 
 
 
 
 
 

406 строки
15 KiB

  1. /**
  2. * \file
  3. * \brief Utilities header
  4. *
  5. * \author
  6. * Christos Choutouridis AEM:8997
  7. * <cchoutou@ece.auth.gr>
  8. */
  9. #ifndef UTILS_HPP_
  10. #define UTILS_HPP_
  11. #include <vector>
  12. #include <iostream>
  13. #include <chrono>
  14. #include <unistd.h>
  15. #include <mpi.h>
  16. #include "config.h"
  17. /*
  18. * MPI_<type> dispatcher mechanism
  19. */
  20. template <typename T> struct MPI_TypeMapper { };
  21. template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
  22. template <> struct MPI_TypeMapper<short> { static MPI_Datatype getType() { return MPI_SHORT; } };
  23. template <> struct MPI_TypeMapper<int> { static MPI_Datatype getType() { return MPI_INT; } };
  24. template <> struct MPI_TypeMapper<long> { static MPI_Datatype getType() { return MPI_LONG; } };
  25. template <> struct MPI_TypeMapper<long long> { static MPI_Datatype getType() { return MPI_LONG_LONG; } };
  26. template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
  27. template <> struct MPI_TypeMapper<unsigned short>{ static MPI_Datatype getType() { return MPI_UNSIGNED_SHORT; } };
  28. template <> struct MPI_TypeMapper<unsigned int> { static MPI_Datatype getType() { return MPI_UNSIGNED; } };
  29. template <> struct MPI_TypeMapper<unsigned long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG; } };
  30. template <> struct MPI_TypeMapper<unsigned long long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG_LONG; } };
  31. template <> struct MPI_TypeMapper<float> { static MPI_Datatype getType() { return MPI_FLOAT; } };
  32. template <> struct MPI_TypeMapper<double> { static MPI_Datatype getType() { return MPI_DOUBLE; } };
  33. /*!
  34. * MPI wrapper type to provide MPI functionality and RAII to MPI as a resource
  35. *
  36. * @tparam TID The MPI type for process id [default: int]
  37. */
  38. template<typename TID = int>
  39. struct MPI_t {
  40. using ID_t = TID; // Export TID type (currently int defined by the standard)
  41. /*!
  42. * Initializes the MPI environment, must called from each process
  43. *
  44. * @param argc [int*] POINTER to main's argc argument
  45. * @param argv [char***] POINTER to main's argv argument
  46. */
  47. void init(int* argc, char*** argv) {
  48. // Initialize the MPI environment
  49. int err;
  50. if ((err = MPI_Init(argc, argv)) != MPI_SUCCESS)
  51. mpi_throw(err, "(MPI) MPI_Init() - ");
  52. initialized_ = true;
  53. // Get the number of processes
  54. int size_value, rank_value;
  55. if ((err = MPI_Comm_size(MPI_COMM_WORLD, &size_value)) != MPI_SUCCESS)
  56. mpi_throw(err, "(MPI) MPI_Comm_size() - ");
  57. if ((err = MPI_Comm_rank(MPI_COMM_WORLD, &rank_value)) != MPI_SUCCESS)
  58. mpi_throw(err, "(MPI) MPI_Comm_rank() - ");
  59. size_ = static_cast<ID_t>(size_value);
  60. rank_ = static_cast<ID_t>(rank_value);
  61. // Get the name of the processor
  62. char processor_name[MPI_MAX_PROCESSOR_NAME];
  63. int name_len;
  64. if ((err = MPI_Get_processor_name(processor_name, &name_len)) != MPI_SUCCESS)
  65. mpi_throw(err, "(MPI) MPI_Get_processor_name() - ");
  66. name_ = std::string (processor_name, name_len);
  67. }
  68. /*!
  69. * Exchange data with partner as part of the sorting network of both bubbletonic or bitonic
  70. * sorting algorithms.
  71. *
  72. * This function matches a transmit and a receive in order for fully exchanged data between
  73. * current node and partner.
  74. *
  75. * @tparam T The inner valur type used in buffer
  76. *
  77. * @param ldata [std::vector<T>] Reference to local data to send
  78. * @param rdata [std::vector<T>] Reference to buffer to receive data from partner
  79. * @param partner [mpi_id_t] The partner for the exchange
  80. * @param tag [int] The tag to use for the MPI communication
  81. */
  82. template<typename T>
  83. void exchange_data(const std::vector<T>& ldata, std::vector<T>& rdata, ID_t partner, int tag) {
  84. if (tag < 0)
  85. throw std::runtime_error("(MPI) exchange_data() [tag] - Out of bound");
  86. MPI_Datatype datatype = MPI_TypeMapper<T>::getType();
  87. int count = static_cast<int>(ldata.size());
  88. MPI_Status status;
  89. int err;
  90. if ((err = MPI_Sendrecv(
  91. ldata.data(), count, datatype, partner, tag,
  92. rdata.data(), count, datatype, partner, tag,
  93. MPI_COMM_WORLD, &status
  94. )) != MPI_SUCCESS)
  95. mpi_throw(err, "(MPI) MPI_Sendrecv() [data] - ");
  96. }
  97. /*!
  98. * Exchange a data object with partner as part of the sorting network of both bubbletonic
  99. * or bitonic sorting algorithms.
  100. *
  101. * This function matches a transmit and a receive in order for fully exchanged the data object
  102. * between current node and partner.
  103. *
  104. * @tparam T The object type
  105. *
  106. * @param local [const T&] Reference to the local object to send
  107. * @param remote [T&] Reference to the object to receive data from partner
  108. * @param partner [mpi_id_t] The partner for the exchange
  109. * @param tag [int] The tag to use for the MPI communication
  110. */
  111. template<typename T>
  112. void exchange_it(const T& local, T& remote, ID_t partner, int tag) {
  113. if (tag < 0)
  114. throw std::runtime_error("(MPI) exchange_it() [tag] - Out of bound");
  115. MPI_Status status;
  116. int err;
  117. if ((err = MPI_Sendrecv(
  118. &local, sizeof(T), MPI_BYTE, partner, tag,
  119. &remote, sizeof(T), MPI_BYTE, partner, tag,
  120. MPI_COMM_WORLD, &status
  121. )) != MPI_SUCCESS)
  122. mpi_throw(err, "(MPI) MPI_Sendrecv() [item] - ");
  123. }
  124. // Accessors
  125. [[nodiscard]] ID_t rank() const noexcept { return rank_; }
  126. [[nodiscard]] ID_t size() const noexcept { return size_; }
  127. [[nodiscard]] const std::string& name() const noexcept { return name_; }
  128. // Mutators
  129. ID_t rank(ID_t rank) noexcept { return rank_ = rank; }
  130. ID_t size(ID_t size) noexcept { return size_ = size; }
  131. std::string& name(const std::string& name) noexcept { return name_ = name; }
  132. /*!
  133. * Finalized the MPI
  134. */
  135. void finalize() {
  136. // Finalize the MPI environment
  137. initialized_ = false;
  138. MPI_Finalize();
  139. }
  140. //! RAII MPI finalization
  141. ~MPI_t() {
  142. // Finalize the MPI environment even on unexpected errors
  143. if (initialized_)
  144. MPI_Finalize();
  145. }
  146. // Local functionality
  147. private:
  148. /*!
  149. * Throw exception helper. It bundles the prefix msg with the MPI error string retrieved by
  150. * MPI API.
  151. *
  152. * @param err The MPI error code
  153. * @param prefixMsg The prefix text for the exception error message
  154. */
  155. void mpi_throw(int err, const char* prefixMsg) {
  156. char err_msg[MPI_MAX_ERROR_STRING];
  157. int msg_len;
  158. MPI_Error_string(err, err_msg, &msg_len);
  159. throw std::runtime_error(prefixMsg + std::string (err_msg) + '\n');
  160. }
  161. private:
  162. ID_t rank_{}; //!< MPI rank of the process
  163. ID_t size_{}; //!< MPI total size of the execution
  164. std::string name_{}; //!< The name of the local machine
  165. bool initialized_{}; //!< RAII helper flag
  166. };
  167. /*
  168. * Exported data types
  169. */
  170. extern MPI_t<> mpi;
  171. using mpi_id_t = MPI_t<>::ID_t;
  172. /*!
  173. * @brief A std::vector wrapper with 2 vectors, an active and a shadow.
  174. *
  175. * This type exposes the standard vector
  176. * functionality of the active vector. The shadow can be used when we need to use the vector as mutable
  177. * data in algorithms that can not support "in-place" editing (like elbow-sort for example)
  178. *
  179. * @tparam Value_t the underlying data type of the vectors
  180. */
  181. template <typename Value_t>
  182. struct ShadowedVec_t {
  183. // STL requirements
  184. using value_type = Value_t;
  185. using iterator = typename std::vector<Value_t>::iterator;
  186. using const_iterator = typename std::vector<Value_t>::const_iterator;
  187. using size_type = typename std::vector<Value_t>::size_type;
  188. // Default constructor
  189. ShadowedVec_t() = default;
  190. // Constructor from an std::vector
  191. explicit ShadowedVec_t(const std::vector<Value_t>& vec)
  192. : North(vec), South(), active(north) {
  193. South.resize(North.size());
  194. }
  195. explicit ShadowedVec_t(std::vector<Value_t>&& vec)
  196. : North(std::move(vec)), South(), active(north) {
  197. South.resize(North.size());
  198. }
  199. // Copy assignment operator
  200. ShadowedVec_t& operator=(const ShadowedVec_t& other) {
  201. if (this != &other) { // Avoid self-assignment
  202. North = other.North;
  203. South = other.South;
  204. active = other.active;
  205. }
  206. return *this;
  207. }
  208. // Move assignment operator
  209. ShadowedVec_t& operator=(ShadowedVec_t&& other) noexcept {
  210. if (this != &other) { // Avoid self-assignment
  211. North = std::move(other.North);
  212. South = std::move(other.South);
  213. active = other.active;
  214. // There is no need to zero out other since it is valid but in a non-defined state
  215. }
  216. return *this;
  217. }
  218. // Type accessors
  219. std::vector<Value_t>& getActive() { return (active == north) ? North : South; }
  220. std::vector<Value_t>& getShadow() { return (active == north) ? South : North; }
  221. const std::vector<Value_t>& getActive() const { return (active == north) ? North : South; }
  222. const std::vector<Value_t>& getShadow() const { return (active == north) ? South : North; }
  223. // Swap vectors
  224. void switch_active() { active = (active == north) ? south : north; }
  225. // Dispatch vector functionality to active vector
  226. Value_t& operator[](size_type index) { return getActive()[index]; }
  227. const Value_t& operator[](size_type index) const { return getActive()[index]; }
  228. Value_t& at(size_type index) { return getActive().at(index); }
  229. const Value_t& at(size_type index) const { return getActive().at(index); }
  230. void push_back(const Value_t& value) { getActive().push_back(value); }
  231. void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
  232. void pop_back() { getActive().pop_back(); }
  233. Value_t& front() { return getActive().front(); }
  234. Value_t& back() { return getActive().back(); }
  235. const Value_t& front() const { return getActive().front(); }
  236. const Value_t& back() const { return getActive().back(); }
  237. iterator begin() { return getActive().begin(); }
  238. const_iterator begin() const { return getActive().begin(); }
  239. iterator end() { return getActive().end(); }
  240. const_iterator end() const { return getActive().end(); }
  241. size_type size() const { return getActive().size(); }
  242. void resize(size_t new_size) {
  243. North.resize(new_size);
  244. South.resize(new_size);
  245. }
  246. void reserve(size_t new_capacity) {
  247. North.reserve(new_capacity);
  248. South.reserve(new_capacity);
  249. }
  250. [[nodiscard]] size_t capacity() const { return getActive().capacity(); }
  251. [[nodiscard]] bool empty() const { return getActive().empty(); }
  252. void clear() { getActive().clear(); }
  253. void swap(std::vector<Value_t>& other) { getActive().swap(other); }
  254. // Comparisons
  255. bool operator== (const ShadowedVec_t& other) { return getActive() == other.getActive(); }
  256. bool operator!= (const ShadowedVec_t& other) { return getActive() != other.getActive(); }
  257. bool operator== (const std::vector<value_type>& other) { return getActive() == other; }
  258. bool operator!= (const std::vector<value_type>& other) { return getActive() != other; }
  259. private:
  260. std::vector<Value_t> North{}; //!< Actual buffer to be used either as active or shadow
  261. std::vector<Value_t> South{}; //!< Actual buffer to be used either as active or shadow
  262. enum {
  263. north, south
  264. } active{north}; //!< Flag to select between North and South buffer
  265. };
  266. /*
  267. * Exported data types
  268. */
  269. using distBuffer_t = ShadowedVec_t<distValue_t>;
  270. extern distBuffer_t Data;
  271. /*!
  272. * A Logger for entire program.
  273. */
  274. struct Log {
  275. struct Endl {} endl; //!< a tag object to to use it as a new line request.
  276. //! We provide logging via << operator
  277. template<typename T>
  278. Log &operator<<(T &&t) {
  279. if (config.verbose) {
  280. if (line_) {
  281. std::cout << "[Log]: " << t;
  282. line_ = false;
  283. } else
  284. std::cout << t;
  285. }
  286. return *this;
  287. }
  288. // overload for special end line handling
  289. Log &operator<<(Endl e) {
  290. (void) e;
  291. if (config.verbose) {
  292. std::cout << '\n';
  293. line_ = true;
  294. }
  295. return *this;
  296. }
  297. private:
  298. bool line_{true};
  299. };
  300. extern Log logger;
  301. /*!
  302. * A small timing utility based on chrono.
  303. */
  304. struct Timing {
  305. using Tpoint = std::chrono::steady_clock::time_point;
  306. using Tduration = std::chrono::microseconds;
  307. using microseconds = std::chrono::microseconds;
  308. using milliseconds = std::chrono::milliseconds;
  309. using seconds = std::chrono::seconds;
  310. //! tool to mark the starting point
  311. Tpoint start() noexcept { return mark_ = std::chrono::steady_clock::now(); }
  312. //! tool to mark the ending point
  313. Tpoint stop() noexcept {
  314. Tpoint now = std::chrono::steady_clock::now();
  315. duration_ += dt(now, mark_);
  316. return now;
  317. }
  318. //! A duration calculation utility
  319. static Tduration dt(Tpoint t2, Tpoint t1) noexcept {
  320. return std::chrono::duration_cast<Tduration>(t2 - t1);
  321. }
  322. //! Tool to print the time interval
  323. void print_duration(const char *what, mpi_id_t rank) noexcept {
  324. if (std::chrono::duration_cast<microseconds>(duration_).count() < 10000)
  325. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  326. << std::to_string(std::chrono::duration_cast<microseconds>(duration_).count()) << " [usec]\n";
  327. else if (std::chrono::duration_cast<milliseconds>(duration_).count() < 10000)
  328. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  329. << std::to_string(std::chrono::duration_cast<milliseconds>(duration_).count()) << " [msec]\n";
  330. else
  331. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  332. << std::to_string(std::chrono::duration_cast<seconds>(duration_).count()) << " [sec]\n";
  333. }
  334. private:
  335. Tpoint mark_{};
  336. Tduration duration_{};
  337. };
  338. /*!
  339. * Utility "high level function"-like macro to forward a function call
  340. * and accumulate the execution time to the corresponding timing object.
  341. *
  342. * @param Tim The Timing object [Needs to have methods start() and stop()]
  343. * @param Func The function name
  344. * @param ... The arguments to pass to function (the preprocessor way)
  345. */
  346. #define timeCall(Tim, Func, ...) \
  347. Tim.start(); \
  348. Func(__VA_ARGS__); \
  349. Tim.stop(); \
  350. #endif /* UTILS_HPP_ */