|
- /**
- * \file v1.hpp
- * \brief
- *
- * \author
- * Christos Choutouridis AEM:8997
- * <cchoutou@ece.auth.gr>
- */
- #ifndef V1_HPP_
- #define V1_HPP_
-
- #include <vector>
- #include <algorithm>
-
- #include "matrix.hpp"
- #include "v0.hpp"
- #include "config.h"
-
- #if defined CILK
- #include <cilk/cilk.h>
- #include <cilk/cilk_api.h>
- //#include <cilk/reducer_opadd.h>
-
- #elif defined OMP
- #include <omp.h>
-
- #elif defined PTHREADS
- #include <thread>
- #include <numeric>
- #include <functional>
- //#include <random>
-
- #else
- #endif
-
-
- void init_workers();
-
- namespace v1 {
-
-
- /*!
- *
- * Merge knnsearch results and select the closest neighbors
- *
- * \tparam DataType
- * \tparam IndexType
- * \param N1 Neighbors results from one knnsearch
- * \param D1 Distances results from one knnsearcs
- * \param N2 Neighbors results from second knnsearch
- * \param D2 Distances results from second knnsearch
- * \param k How many
- * \param m How accurate
- * \param N Output for Neighbors
- * \param D Output for Distances
- */
- template <typename DataType, typename IndexType>
- void mergeResultsWithM(mtx::Matrix<IndexType>& N1, mtx::Matrix<DataType>& D1,
- mtx::Matrix<IndexType>& N2, mtx::Matrix<DataType>& D2,
- size_t k, size_t m,
- mtx::Matrix<IndexType>& N, mtx::Matrix<DataType>& D) {
- size_t numQueries = N1.rows();
- size_t maxCandidates = std::min((IndexType)m, (IndexType)(N1.columns() + N2.columns()));
-
- for (size_t q = 0; q < numQueries; ++q) {
- // Combine distances and neighbors
- std::vector<std::pair<DataType, IndexType>> candidates(N1.columns() + N2.columns());
-
- // Concatenate N1 and N2 rows
- for (size_t i = 0; i < N1.columns(); ++i) {
- candidates[i] = {D1.get(q, i), N1.get(q, i)};
- }
- for (size_t i = 0; i < N2.columns(); ++i) {
- candidates[i + N1.columns()] = {D2.get(q, i), N2.get(q, i)};
- }
-
- // Keep only the top-m candidates
- v0::quickselect(candidates, maxCandidates);
-
- // Sort the top-m candidates
- std::sort(candidates.begin(), candidates.begin() + maxCandidates);
-
- // If m < k, pad the remaining slots with invalid values
- for (size_t i = 0; i < k; ++i) {
- if (i < maxCandidates) {
- D.set(candidates[i].first, q, i);
- N.set(candidates[i].second, q, i);
- } else {
- D.set(std::numeric_limits<DataType>::infinity(), q, i);
- N.set(static_cast<IndexType>(-1), q, i); // Invalid index (end)
- }
- }
- }
- }
-
- /*!
- * The main parallelizable body
- */
- template<typename MatrixD, typename MatrixI>
- void worker_body (std::vector<MatrixD>& corpus_slices,
- std::vector<MatrixD>& query_slices,
- MatrixI& idx,
- MatrixD& dst,
- size_t slice,
- size_t num_slices, size_t corpus_slice_size, size_t query_slice_size,
- size_t k,
- size_t m) {
- // "load" types
- using DstType = typename MatrixD::dataType;
- using IdxType = typename MatrixI::dataType;
-
-
- for (size_t ci = 0; ci < num_slices; ++ci) {
- size_t idx_offset = ci * corpus_slice_size;
-
- // Intermediate matrixes for intermediate results
- MatrixI temp_idx(query_slices[slice].rows(), k);
- MatrixD temp_dst(query_slices[slice].rows(), k);
-
- // kNN for each combination
- v0::knnsearch(corpus_slices[ci], query_slices[slice], idx_offset, k, m, temp_idx, temp_dst);
-
- // Merge temporary results to final results
- MatrixI idx_slice((IdxType*)idx.data(), slice * query_slice_size, query_slices[slice].rows(), k);
- MatrixD dst_slice((DstType*)dst.data(), slice * query_slice_size, query_slices[slice].rows(), k);
-
- mergeResultsWithM(idx_slice, dst_slice, temp_idx, temp_dst, k, m, idx_slice, dst_slice);
- }
- }
-
- /*!
- * \param C Is a MxD matrix (Corpus)
- * \param Q Is a NxD matrix (Query)
- * \param num_slices How many slices to Corpus-Query
- * \param k The number of nearest neighbors needed
- * \param m accuracy
- * \param idx Is the Nxk matrix with the k indexes of the C points, that are
- * neighbors of the nth point of Q
- * \param dst Is the Nxk matrix with the k distances to the C points of the nth
- * point of Q
- */
- template<typename MatrixD, typename MatrixI>
- void knnsearch(MatrixD& C, MatrixD& Q, size_t num_slices, size_t k, size_t m, MatrixI& idx, MatrixD& dst) {
- using DstType = typename MatrixD::dataType;
- using IdxType = typename MatrixI::dataType;
-
- //Slice calculations
- size_t corpus_slice_size = C.rows() / ((num_slices == 0)? 1:num_slices);
- size_t query_slice_size = Q.rows() / ((num_slices == 0)? 1:num_slices);
-
- // Make slices
- std::vector<MatrixD> corpus_slices;
- std::vector<MatrixD> query_slices;
-
- for (size_t i = 0; i < num_slices; ++i) {
- corpus_slices.emplace_back(
- (DstType*)C.data(),
- i * corpus_slice_size,
- (i == num_slices - 1 ? C.rows() - i * corpus_slice_size : corpus_slice_size),
- C.columns());
- query_slices.emplace_back(
- (DstType*)Q.data(),
- i * query_slice_size,
- (i == num_slices - 1 ? Q.rows() - i * query_slice_size : query_slice_size),
- Q.columns());
- }
-
- // Intermediate results
- for (size_t i = 0; i < dst.rows(); ++i) {
- for (size_t j = 0; j < dst.columns(); ++j) {
- dst.set(std::numeric_limits<DstType>::infinity(), i, j);
- idx.set(static_cast<IdxType>(-1), i, j);
- }
- }
-
- // Main loop
- #if defined OMP
- #pragma omp parallel for
- for (size_t qi = 0; qi < num_slices; ++qi) {
- worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
- }
- #elif defined CILK
- cilk_for (size_t qi = 0; qi < num_slices; ++qi) {
- worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
- }
- #elif defined PTHREADS
- std::vector<std::thread> workers;
- for (size_t qi = 0; qi < num_slices; ++qi) {
- workers.push_back(
- std::thread (worker_body<MatrixD, MatrixI>,
- std::ref(corpus_slices), std::ref(query_slices),
- std::ref(idx), std::ref(dst),
- qi,
- num_slices, corpus_slice_size, query_slice_size,
- k, m)
- );
- }
- // Join threads
- std::for_each(workers.begin(), workers.end(), [](std::thread& t){
- t.join();
- });
-
- #else
- for (size_t qi = 0; qi < num_slices; ++qi) {
- for (size_t qi = 0; qi < num_slices; ++qi) {
- worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
- }
- }
- #endif
-
- }
-
- } // namespace v1
-
- #endif /* V1_HPP_ */
|