AUTH's THMMY "Parallel and distributed systems" course assignments.
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符
 
 
 
 
 
 

244 行
8.2 KiB

  1. /**
  2. * \file
  3. * \brief Utilities header
  4. *
  5. * \author
  6. * Christos Choutouridis AEM:8997
  7. * <cchoutou@ece.auth.gr>
  8. */
  9. #ifndef UTILS_HPP_
  10. #define UTILS_HPP_
  11. #include <vector>
  12. #include <iostream>
  13. #include <chrono>
  14. #include <unistd.h>
  15. #include <mpi.h>
  16. //#include "matrix.hpp"
  17. #include "config.h"
  18. template <typename T> struct MPI_TypeMapper;
  19. // Specializations for supported types
  20. template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
  21. template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
  22. template <> struct MPI_TypeMapper<short> { static MPI_Datatype getType() { return MPI_SHORT; } };
  23. template <> struct MPI_TypeMapper<int> { static MPI_Datatype getType() { return MPI_INT; } };
  24. template <> struct MPI_TypeMapper<long> { static MPI_Datatype getType() { return MPI_LONG; } };
  25. template <> struct MPI_TypeMapper<long long> { static MPI_Datatype getType() { return MPI_LONG_LONG; } };
  26. template <> struct MPI_TypeMapper<unsigned short>{ static MPI_Datatype getType() { return MPI_UNSIGNED_SHORT; } };
  27. template <> struct MPI_TypeMapper<unsigned long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG; } };
  28. template <> struct MPI_TypeMapper<unsigned long long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG_LONG; } };
  29. template<typename TID = int>
  30. struct MPI_t {
  31. using ID_t = TID; // Export TID type (currently int defined by the standard)
  32. void init(int *argc, char ***argv) {
  33. // Initialize the MPI environment
  34. MPI_Init(argc, argv);
  35. // Get the number of processes
  36. int size_value, rank_value;
  37. MPI_Comm_size(MPI_COMM_WORLD, &size_value);
  38. MPI_Comm_rank(MPI_COMM_WORLD, &rank_value);
  39. size_ = static_cast<ID_t>(size_value);
  40. rank_ = static_cast<ID_t>(rank_value);
  41. // Get the name of the processor
  42. char processor_name[MPI_MAX_PROCESSOR_NAME];
  43. int name_len;
  44. MPI_Get_processor_name(processor_name, &name_len);
  45. name_ = std::string (processor_name, name_len);
  46. }
  47. void finalize() {
  48. // Finalize the MPI environment.
  49. MPI_Finalize();
  50. }
  51. template<typename T>
  52. void exchange(ID_t partner, const std::vector<T>& send_data, std::vector<T>& recv_data, int tag) {
  53. using namespace std::string_literals;
  54. MPI_Status status;
  55. MPI_Datatype datatype = MPI_TypeMapper<T>::getType();
  56. int send_count = static_cast<int>(send_data.size());
  57. int err = MPI_Sendrecv(
  58. send_data.data(), send_count, datatype, partner, tag,
  59. recv_data.data(), send_count, datatype, partner, tag,
  60. MPI_COMM_WORLD, &status
  61. );
  62. if (err != MPI_SUCCESS) {
  63. char err_msg[MPI_MAX_ERROR_STRING];
  64. int msg_len;
  65. MPI_Error_string(err, err_msg, &msg_len);
  66. throw std::runtime_error("(MPI) MPI_Sendrecv() - " + std::string (err_msg) + '\n');
  67. }
  68. }
  69. // Accessors
  70. [[nodiscard]] ID_t rank() const noexcept { return rank_; }
  71. [[nodiscard]] ID_t size() const noexcept { return size_; }
  72. [[nodiscard]] const std::string& name() const noexcept { return name_; }
  73. private:
  74. ID_t rank_{};
  75. ID_t size_{};
  76. std::string name_{};
  77. };
  78. extern MPI_t<> mpi;
  79. using mpi_id_t = MPI_t<>::ID_t;
  80. template <typename Value_t>
  81. struct ShadowedVec_t {
  82. // STL requirements
  83. using value_type = Value_t;
  84. using iterator = typename std::vector<Value_t>::iterator;
  85. using const_iterator = typename std::vector<Value_t>::const_iterator;
  86. using size_type = typename std::vector<Value_t>::size_type;
  87. // Dispatch to active vector
  88. Value_t& operator[](size_type index) { return getActive()[index]; }
  89. const Value_t& operator[](size_type index) const { return getActive()[index]; }
  90. Value_t& at(size_type index) { return getActive().at(index); }
  91. const Value_t& at(size_type index) const { return getActive().at(index); }
  92. void push_back(const Value_t& value) { getActive().push_back(value); }
  93. void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
  94. void pop_back() { getActive().pop_back(); }
  95. Value_t& front() { return getActive().front(); }
  96. const Value_t& front() const { return getActive().front(); }
  97. Value_t& back() { return getActive().back(); }
  98. const Value_t& back() const { return getActive().back(); }
  99. iterator begin() { return getActive().begin(); }
  100. const_iterator begin() const { return getActive().begin(); }
  101. iterator end() { return getActive().end(); }
  102. const_iterator end() const { return getActive().end(); }
  103. size_type size() const { return getActive().size(); }
  104. void resize(size_t new_size) {
  105. North.resize(new_size);
  106. South.resize(new_size);
  107. }
  108. void reserve(size_t new_capacity) {
  109. North.reserve(new_capacity);
  110. South.reserve(new_capacity);
  111. }
  112. [[nodiscard]] size_t capacity() const { return getActive().capacity(); }
  113. [[nodiscard]] bool empty() const { return getActive().empty(); }
  114. void clear() { getActive().clear(); }
  115. void swap(std::vector<Value_t>& other) { getActive().swap(other); }
  116. // Switching vectors
  117. void switch_active() { active = (active == north) ? south : north; }
  118. // Accessors
  119. const std::vector<Value_t>& getNorth() const { return North; }
  120. const std::vector<Value_t>& getSouth() const { return South; }
  121. std::vector<Value_t>& getActive() {
  122. return (active == north) ? North : South;
  123. }
  124. const std::vector<Value_t>& getActive() const {
  125. return (active == north) ? North : South;
  126. }
  127. std::vector<Value_t>& getShadow() {
  128. return (active == north) ? South : North;
  129. }
  130. const std::vector<Value_t>& getShadow() const {
  131. return (active == north) ? South : North;
  132. }
  133. private:
  134. enum { north, south } active{north};
  135. std::vector<Value_t> North{};
  136. std::vector<Value_t> South{};
  137. };
  138. using distBuffer_t = ShadowedVec_t<distValue_t>;
  139. extern distBuffer_t Data;
  140. /*!
  141. * A Logger for entire program.
  142. */
  143. struct Log {
  144. struct Endl {} endl; //!< a tag object to to use it as a new line request.
  145. //! We provide logging via << operator
  146. template<typename T>
  147. Log &operator<<(T &&t) {
  148. if (session.verbose) {
  149. if (line_) {
  150. std::cout << "[Log]: " << t;
  151. line_ = false;
  152. } else
  153. std::cout << t;
  154. }
  155. return *this;
  156. }
  157. // overload for special end line handling
  158. Log &operator<<(Endl e) {
  159. (void) e;
  160. if (session.verbose) {
  161. std::cout << '\n';
  162. line_ = true;
  163. }
  164. return *this;
  165. }
  166. private:
  167. bool line_{true};
  168. };
  169. extern Log logger;
  170. /*!
  171. * A small timing utility based on chrono.
  172. */
  173. struct Timing {
  174. using Tpoint = std::chrono::steady_clock::time_point;
  175. using microseconds = std::chrono::microseconds;
  176. using milliseconds = std::chrono::milliseconds;
  177. using seconds = std::chrono::seconds;
  178. //! tool to mark the starting point
  179. Tpoint start() noexcept { return start_ = std::chrono::steady_clock::now(); }
  180. //! tool to mark the ending point
  181. Tpoint stop() noexcept { return stop_ = std::chrono::steady_clock::now(); }
  182. auto dt() noexcept {
  183. return std::chrono::duration_cast<std::chrono::microseconds>(stop_ - start_).count();
  184. }
  185. //! tool to print the time interval
  186. void print_dt(const char *what) noexcept {
  187. if (session.timing) {
  188. auto t = stop_ - start_;
  189. if (std::chrono::duration_cast<microseconds>(t).count() < 10000)
  190. std::cout << "[Timing]: " << what << ": "
  191. << std::to_string(std::chrono::duration_cast<microseconds>(t).count()) << " [usec]\n";
  192. else if (std::chrono::duration_cast<milliseconds>(t).count() < 10000)
  193. std::cout << "[Timing]: " << what << ": "
  194. << std::to_string(std::chrono::duration_cast<milliseconds>(t).count()) << " [msec]\n";
  195. else
  196. std::cout << "[Timing]: " << what << ": "
  197. << std::to_string(std::chrono::duration_cast<seconds>(t).count()) << " [sec]\n";
  198. }
  199. }
  200. private:
  201. Tpoint start_;
  202. Tpoint stop_;
  203. };
  204. #endif /* UTILS_HPP_ */