AUTH's THMMY "Parallel and distributed systems" course assignments.
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 
 
 
 
 

422 lignes
15 KiB

  1. /**
  2. * \file
  3. * \brief Utilities header
  4. *
  5. * \author
  6. * Christos Choutouridis AEM:8997
  7. * <cchoutou@ece.auth.gr>
  8. */
  9. #ifndef UTILS_HPP_
  10. #define UTILS_HPP_
  11. #include <vector>
  12. #include <iostream>
  13. #include <chrono>
  14. #include <unistd.h>
  15. #include <mpi.h>
  16. #include "config.h"
  17. /*
  18. * MPI_<type> dispatcher mechanism
  19. */
  20. template <typename T> struct MPI_TypeMapper { };
  21. template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
  22. template <> struct MPI_TypeMapper<short> { static MPI_Datatype getType() { return MPI_SHORT; } };
  23. template <> struct MPI_TypeMapper<int> { static MPI_Datatype getType() { return MPI_INT; } };
  24. template <> struct MPI_TypeMapper<long> { static MPI_Datatype getType() { return MPI_LONG; } };
  25. template <> struct MPI_TypeMapper<long long> { static MPI_Datatype getType() { return MPI_LONG_LONG; } };
  26. template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
  27. template <> struct MPI_TypeMapper<unsigned short>{ static MPI_Datatype getType() { return MPI_UNSIGNED_SHORT; } };
  28. template <> struct MPI_TypeMapper<unsigned int> { static MPI_Datatype getType() { return MPI_UNSIGNED; } };
  29. template <> struct MPI_TypeMapper<unsigned long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG; } };
  30. template <> struct MPI_TypeMapper<unsigned long long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG_LONG; } };
  31. template <> struct MPI_TypeMapper<float> { static MPI_Datatype getType() { return MPI_FLOAT; } };
  32. template <> struct MPI_TypeMapper<double> { static MPI_Datatype getType() { return MPI_DOUBLE; } };
  33. /*!
  34. * MPI wrapper type to provide MPI functionality and RAII to MPI as a resource
  35. *
  36. * @tparam TID The MPI type for process id [default: int]
  37. */
  38. template<typename TID = int>
  39. struct MPI_t {
  40. using ID_t = TID; // Export TID type (currently int defined by the standard)
  41. /*!
  42. * Initializes the MPI environment, must called from each process
  43. *
  44. * @param argc [int*] POINTER to main's argc argument
  45. * @param argv [char***] POINTER to main's argv argument
  46. */
  47. void init(int* argc, char*** argv) {
  48. // Initialize the MPI environment
  49. int err;
  50. if ((err = MPI_Init(argc, argv)) != MPI_SUCCESS)
  51. mpi_throw(err, "(MPI) MPI_Init() - ");
  52. initialized_ = true;
  53. // Get the number of processes
  54. int size_value, rank_value;
  55. if ((err = MPI_Comm_size(MPI_COMM_WORLD, &size_value)) != MPI_SUCCESS)
  56. mpi_throw(err, "(MPI) MPI_Comm_size() - ");
  57. if ((err = MPI_Comm_rank(MPI_COMM_WORLD, &rank_value)) != MPI_SUCCESS)
  58. mpi_throw(err, "(MPI) MPI_Comm_rank() - ");
  59. size_ = static_cast<ID_t>(size_value);
  60. rank_ = static_cast<ID_t>(rank_value);
  61. if (size_ > static_cast<ID_t>(MAX_MPI_SIZE))
  62. throw std::runtime_error(
  63. "(MPI) size - Not supported number of nodes [over " + std::to_string(MAX_MPI_SIZE) + "]\n"
  64. );
  65. // Get the name of the processor
  66. char processor_name[MPI_MAX_PROCESSOR_NAME];
  67. int name_len;
  68. if ((err = MPI_Get_processor_name(processor_name, &name_len)) != MPI_SUCCESS)
  69. mpi_throw(err, "(MPI) MPI_Get_processor_name() - ");
  70. name_ = std::string (processor_name, name_len);
  71. }
  72. /*!
  73. * Initiate a data exchange data with partner using non-blocking Isend-Irecv, as part of the
  74. * sorting network of both bubbletonic or bitonic sorting algorithms.
  75. *
  76. * This function matches a transmit and a receive in order for fully exchanged data between
  77. * current node and partner.
  78. * @note
  79. * This call MUST paired with exchange_wait() for each MPI_t object.
  80. * Calling 2 consecutive exchange_start() for the same MPI_t object is undefined.
  81. *
  82. * @tparam ValueT The underlying value type used in buffers
  83. *
  84. * @param ldata [const ValueT*] Pointer to local data to send
  85. * @param rdata [ValueT*] Pointer to buffer to receive data from partner
  86. * @param count [size_t] The number of data to exchange
  87. * @param partner [mpi_id_t] The partner for the exchange
  88. * @param tag [int] The tag to use for the MPI communication
  89. */
  90. template<typename ValueT>
  91. void exchange_start(const ValueT* ldata, ValueT* rdata, size_t count, ID_t partner, int tag) {
  92. if (tag < 0)
  93. throw std::runtime_error("(MPI) exchange_data() [tag] - Out of bound");
  94. MPI_Datatype datatype = MPI_TypeMapper<ValueT>::getType();
  95. int err;
  96. err = MPI_Isend(ldata, count, datatype, partner, tag, MPI_COMM_WORLD, &handle_tx);
  97. if (err != MPI_SUCCESS)
  98. mpi_throw(err, "(MPI) MPI_Isend() - ");
  99. err = MPI_Irecv(rdata, count, datatype, partner, tag, MPI_COMM_WORLD, &handle_rx);
  100. if (err != MPI_SUCCESS)
  101. mpi_throw(err, "(MPI) MPI_Irecv() - ");
  102. }
  103. /*!
  104. * Block wait for the completion of the previously called exchange_start()
  105. *
  106. * @note
  107. * This call MUST paired with exchange_start() for each MPI_t object.
  108. * Calling 2 consecutive exchange_wait() for the same MPI_t object is undefined.
  109. */
  110. void exchange_wait() {
  111. MPI_Status status;
  112. int err;
  113. if ((err = MPI_Wait(&handle_tx, &status)) != MPI_SUCCESS)
  114. mpi_throw(err, "(MPI) MPI_Wait() [send] - ");
  115. if ((err = MPI_Wait(&handle_rx, &status)) != MPI_SUCCESS)
  116. mpi_throw(err, "(MPI) MPI_Wait() [recv] - ");
  117. }
  118. // Accessors
  119. [[nodiscard]] ID_t rank() const noexcept { return rank_; }
  120. [[nodiscard]] ID_t size() const noexcept { return size_; }
  121. [[nodiscard]] const std::string& name() const noexcept { return name_; }
  122. // Mutators
  123. ID_t rank(ID_t rank) noexcept { return rank_ = rank; }
  124. ID_t size(ID_t size) noexcept { return size_ = size; }
  125. std::string& name(const std::string& name) noexcept { return name_ = name; }
  126. /*!
  127. * Finalized the MPI
  128. */
  129. void finalize() {
  130. // Finalize the MPI environment
  131. initialized_ = false;
  132. MPI_Finalize();
  133. }
  134. //! RAII MPI finalization
  135. ~MPI_t() {
  136. // Finalize the MPI environment even on unexpected errors
  137. if (initialized_)
  138. MPI_Finalize();
  139. }
  140. // Local functionality
  141. private:
  142. /*!
  143. * Throw exception helper. It bundles the prefix msg with the MPI error string retrieved by
  144. * MPI API.
  145. *
  146. * @param err The MPI error code
  147. * @param prefixMsg The prefix text for the exception error message
  148. */
  149. void mpi_throw(int err, const char* prefixMsg) {
  150. char err_msg[MPI_MAX_ERROR_STRING];
  151. int msg_len;
  152. MPI_Error_string(err, err_msg, &msg_len);
  153. throw std::runtime_error(prefixMsg + std::string (err_msg) + '\n');
  154. }
  155. private:
  156. ID_t rank_{}; //!< MPI rank of the process
  157. ID_t size_{}; //!< MPI total size of the execution
  158. std::string name_{}; //!< The name of the local machine
  159. bool initialized_{}; //!< RAII helper flag
  160. MPI_Request handle_tx{}; //!< MPI async exchange handler for Transmission
  161. MPI_Request handle_rx{}; //!< MPI async exchange handler for Receptions
  162. };
  163. /*
  164. * Exported data types
  165. */
  166. extern MPI_t<> mpi;
  167. using mpi_id_t = MPI_t<>::ID_t;
  168. /*!
  169. * @brief A std::vector wrapper with 2 vectors, an active and a shadow.
  170. *
  171. * This type exposes the standard vector
  172. * functionality of the active vector. The shadow can be used when we need to use the vector as mutable
  173. * data in algorithms that can not support "in-place" editing (like elbow-sort for example)
  174. *
  175. * @tparam Value_t the underlying data type of the vectors
  176. */
  177. template <typename Value_t>
  178. struct ShadowedVec_t {
  179. // STL requirements
  180. using value_type = Value_t;
  181. using iterator = typename std::vector<Value_t>::iterator;
  182. using const_iterator = typename std::vector<Value_t>::const_iterator;
  183. using size_type = typename std::vector<Value_t>::size_type;
  184. // Default constructor
  185. ShadowedVec_t() = default;
  186. // Constructor from an std::vector
  187. explicit ShadowedVec_t(const std::vector<Value_t>& vec)
  188. : North(vec), South(), active(north) {
  189. South.resize(North.size());
  190. }
  191. explicit ShadowedVec_t(std::vector<Value_t>&& vec)
  192. : North(std::move(vec)), South(), active(north) {
  193. South.resize(North.size());
  194. }
  195. // Copy assignment operator
  196. ShadowedVec_t& operator=(const ShadowedVec_t& other) {
  197. if (this != &other) { // Avoid self-assignment
  198. North = other.North;
  199. South = other.South;
  200. active = other.active;
  201. }
  202. return *this;
  203. }
  204. // Move assignment operator
  205. ShadowedVec_t& operator=(ShadowedVec_t&& other) noexcept {
  206. if (this != &other) { // Avoid self-assignment
  207. North = std::move(other.North);
  208. South = std::move(other.South);
  209. active = other.active;
  210. // There is no need to zero out other since it is valid but in a non-defined state
  211. }
  212. return *this;
  213. }
  214. // Type accessors
  215. std::vector<Value_t>& getActive() { return (active == north) ? North : South; }
  216. std::vector<Value_t>& getShadow() { return (active == north) ? South : North; }
  217. const std::vector<Value_t>& getActive() const { return (active == north) ? North : South; }
  218. const std::vector<Value_t>& getShadow() const { return (active == north) ? South : North; }
  219. // Swap vectors
  220. void switch_active() { active = (active == north) ? south : north; }
  221. // Dispatch vector functionality to active vector
  222. Value_t& operator[](size_type index) { return getActive()[index]; }
  223. const Value_t& operator[](size_type index) const { return getActive()[index]; }
  224. Value_t& at(size_type index) { return getActive().at(index); }
  225. const Value_t& at(size_type index) const { return getActive().at(index); }
  226. void push_back(const Value_t& value) { getActive().push_back(value); }
  227. void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
  228. void pop_back() { getActive().pop_back(); }
  229. Value_t& front() { return getActive().front(); }
  230. Value_t& back() { return getActive().back(); }
  231. const Value_t& front() const { return getActive().front(); }
  232. const Value_t& back() const { return getActive().back(); }
  233. iterator begin() { return getActive().begin(); }
  234. const_iterator begin() const { return getActive().begin(); }
  235. iterator end() { return getActive().end(); }
  236. const_iterator end() const { return getActive().end(); }
  237. size_type size() const { return getActive().size(); }
  238. void resize(size_t new_size) {
  239. North.resize(new_size);
  240. South.resize(new_size);
  241. }
  242. void reserve(size_t new_capacity) {
  243. North.reserve(new_capacity);
  244. South.reserve(new_capacity);
  245. }
  246. [[nodiscard]] size_t capacity() const { return getActive().capacity(); }
  247. [[nodiscard]] bool empty() const { return getActive().empty(); }
  248. void clear() { getActive().clear(); }
  249. void swap(std::vector<Value_t>& other) { getActive().swap(other); }
  250. // Comparisons
  251. bool operator== (const ShadowedVec_t& other) { return getActive() == other.getActive(); }
  252. bool operator!= (const ShadowedVec_t& other) { return getActive() != other.getActive(); }
  253. bool operator== (const std::vector<value_type>& other) { return getActive() == other; }
  254. bool operator!= (const std::vector<value_type>& other) { return getActive() != other; }
  255. private:
  256. std::vector<Value_t> North{}; //!< Actual buffer to be used either as active or shadow
  257. std::vector<Value_t> South{}; //!< Actual buffer to be used either as active or shadow
  258. enum {
  259. north, south
  260. } active{north}; //!< Flag to select between North and South buffer
  261. };
  262. /*
  263. * Exported data types
  264. */
  265. using distBuffer_t = ShadowedVec_t<distValue_t>;
  266. extern distBuffer_t Data;
  267. /*!
  268. * A Logger for entire program.
  269. */
  270. struct Log {
  271. struct Endl {} endl; //!< a tag object to to use it as a new line request.
  272. //! We provide logging via << operator
  273. template<typename T>
  274. Log &operator<<(T &&t) {
  275. if (config.verbose) {
  276. if (line_) {
  277. std::cout << "[Log]: " << t;
  278. line_ = false;
  279. } else
  280. std::cout << t;
  281. }
  282. return *this;
  283. }
  284. // overload for special end line handling
  285. Log &operator<<(Endl e) {
  286. (void) e;
  287. if (config.verbose) {
  288. std::cout << '\n';
  289. line_ = true;
  290. }
  291. return *this;
  292. }
  293. private:
  294. bool line_{true};
  295. };
  296. extern Log logger;
  297. /*!
  298. * A small timing utility based on chrono.
  299. */
  300. struct Timing {
  301. using Tpoint = std::chrono::steady_clock::time_point;
  302. using Tduration = std::chrono::microseconds;
  303. using microseconds = std::chrono::microseconds;
  304. using milliseconds = std::chrono::milliseconds;
  305. using seconds = std::chrono::seconds;
  306. //! tool to mark the starting point
  307. Tpoint start() noexcept { return mark_ = std::chrono::steady_clock::now(); }
  308. //! tool to mark the ending point
  309. Tpoint stop() noexcept {
  310. Tpoint now = std::chrono::steady_clock::now();
  311. duration_ += dt(now, mark_);
  312. return now;
  313. }
  314. //! A duration calculation utility
  315. static Tduration dt(Tpoint t2, Tpoint t1) noexcept {
  316. return std::chrono::duration_cast<Tduration>(t2 - t1);
  317. }
  318. //! Tool to print the time interval
  319. void print_duration(const char *what, mpi_id_t rank) noexcept {
  320. if (std::chrono::duration_cast<microseconds>(duration_).count() < 10000)
  321. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  322. << std::to_string(std::chrono::duration_cast<microseconds>(duration_).count()) << " [usec]\n";
  323. else if (std::chrono::duration_cast<milliseconds>(duration_).count() < 10000)
  324. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  325. << std::to_string(std::chrono::duration_cast<milliseconds>(duration_).count()) << " [msec]\n";
  326. else {
  327. char stime[26]; // fit ulong
  328. auto sec = std::chrono::duration_cast<seconds>(duration_).count();
  329. auto msec = (std::chrono::duration_cast<milliseconds>(duration_).count() % 1000) / 10; // keep 2 digit
  330. std::sprintf(stime, "%ld.%1ld", sec, msec);
  331. std::cout << "[Timing] (Rank " << rank << ") " << what << ": " << stime << " [sec]\n";
  332. }
  333. }
  334. private:
  335. Tpoint mark_{};
  336. Tduration duration_{};
  337. };
  338. /*!
  339. * Utility "high level function"-like macro to forward a function call
  340. * and accumulate the execution time to the corresponding timing object.
  341. *
  342. * @param Tim The Timing object [Needs to have methods start() and stop()]
  343. * @param Func The function name
  344. * @param ... The arguments to pass to function (the preprocessor way)
  345. */
  346. #define timeCall(Tim, Func, ...) \
  347. Tim.start(); \
  348. Func(__VA_ARGS__); \
  349. Tim.stop(); \
  350. /*!
  351. * A utility to check if a number is power of two
  352. *
  353. * @tparam Integral The integral type of the number to check
  354. * @param x The number to check
  355. * @return True if it is power of 2, false otherwise
  356. */
  357. template <typename Integral>
  358. constexpr inline bool isPowerOfTwo(Integral x) noexcept {
  359. return (!(x & (x - 1)) && x);
  360. }
  361. #endif /* UTILS_HPP_ */