AUTH's THMMY "Parallel and distributed systems" course assignments.
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.
 
 
 
 
 
 

422 lignes
15 KiB

  1. /**
  2. * \file
  3. * \brief Utilities header
  4. *
  5. * \author
  6. * Christos Choutouridis AEM:8997
  7. * <cchoutou@ece.auth.gr>
  8. */
  9. #ifndef UTILS_HPP_
  10. #define UTILS_HPP_
  11. #include <vector>
  12. #include <iostream>
  13. #include <chrono>
  14. #include <unistd.h>
  15. #include <mpi.h>
  16. #include "config.h"
  17. /*!
  18. * Min-Max statistics data for exchange optimization
  19. * @tparam Value_t The underlying data type of the sequence data
  20. */
  21. template <typename Value_t>
  22. struct Stat_t {
  23. using value_type = Value_t; //!< meta-export the type
  24. Value_t min{}; //!< The minimum value of the sequence
  25. Value_t max{}; //!< The maximum value of the sequence
  26. };
  27. //! Application data selection alias
  28. using distStat_t = Stat_t<distValue_t>;
  29. extern distStat_t localStat, remoteStat; // Make stats public
  30. /*
  31. * MPI_<type> dispatcher mechanism
  32. */
  33. template <typename T> struct MPI_TypeMapper { };
  34. template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
  35. template <> struct MPI_TypeMapper<short> { static MPI_Datatype getType() { return MPI_SHORT; } };
  36. template <> struct MPI_TypeMapper<int> { static MPI_Datatype getType() { return MPI_INT; } };
  37. template <> struct MPI_TypeMapper<long> { static MPI_Datatype getType() { return MPI_LONG; } };
  38. template <> struct MPI_TypeMapper<long long> { static MPI_Datatype getType() { return MPI_LONG_LONG; } };
  39. template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
  40. template <> struct MPI_TypeMapper<unsigned short>{ static MPI_Datatype getType() { return MPI_UNSIGNED_SHORT; } };
  41. template <> struct MPI_TypeMapper<unsigned int> { static MPI_Datatype getType() { return MPI_UNSIGNED; } };
  42. template <> struct MPI_TypeMapper<unsigned long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG; } };
  43. template <> struct MPI_TypeMapper<unsigned long long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG_LONG; } };
  44. template <> struct MPI_TypeMapper<float> { static MPI_Datatype getType() { return MPI_FLOAT; } };
  45. template <> struct MPI_TypeMapper<double> { static MPI_Datatype getType() { return MPI_DOUBLE; } };
  46. /*!
  47. * MPI wrapper type to provide MPI functionality and RAII to MPI as a resource
  48. *
  49. * @tparam TID The MPI type for process id [default: int]
  50. */
  51. template<typename TID = int>
  52. struct MPI_t {
  53. using ID_t = TID; // Export TID type (currently int defined by the standard)
  54. /*!
  55. * Initializes the MPI environment, must called from each process
  56. *
  57. * @param argc [int*] POINTER to main's argc argument
  58. * @param argv [char***] POINTER to main's argv argument
  59. */
  60. void init(int* argc, char*** argv) {
  61. // Initialize the MPI environment
  62. int err;
  63. if ((err = MPI_Init(argc, argv)) != MPI_SUCCESS)
  64. mpi_throw(err, "(MPI) MPI_Init() - ");
  65. initialized_ = true;
  66. // Get the number of processes
  67. int size_value, rank_value;
  68. if ((err = MPI_Comm_size(MPI_COMM_WORLD, &size_value)) != MPI_SUCCESS)
  69. mpi_throw(err, "(MPI) MPI_Comm_size() - ");
  70. if ((err = MPI_Comm_rank(MPI_COMM_WORLD, &rank_value)) != MPI_SUCCESS)
  71. mpi_throw(err, "(MPI) MPI_Comm_rank() - ");
  72. size_ = static_cast<ID_t>(size_value);
  73. rank_ = static_cast<ID_t>(rank_value);
  74. // Get the name of the processor
  75. char processor_name[MPI_MAX_PROCESSOR_NAME];
  76. int name_len;
  77. if ((err = MPI_Get_processor_name(processor_name, &name_len)) != MPI_SUCCESS)
  78. mpi_throw(err, "(MPI) MPI_Get_processor_name() - ");
  79. name_ = std::string (processor_name, name_len);
  80. }
  81. /*!
  82. * Exchange data with partner as part of the sorting network of both bubbletonic or bitonic
  83. * sorting algorithms.
  84. *
  85. * This function matches a transmit and a receive in order for fully exchanged data between
  86. * current node and partner.
  87. *
  88. * @tparam T The inner valur type used in buffer
  89. *
  90. * @param ldata [std::vector<T>] Reference to local data to send
  91. * @param rdata [std::vector<T>] Reference to buffer to receive data from partner
  92. * @param partner [mpi_id_t] The partner for the exchange
  93. * @param tag [int] The tag to use for the MPI communication
  94. */
  95. template<typename T>
  96. void exchange_data(const std::vector<T>& ldata, std::vector<T>& rdata, ID_t partner, int tag) {
  97. if (tag < 0)
  98. throw std::runtime_error("(MPI) exchange_data() [tag] - Out of bound");
  99. MPI_Datatype datatype = MPI_TypeMapper<T>::getType();
  100. int count = static_cast<int>(ldata.size());
  101. MPI_Status status;
  102. int err;
  103. if ((err = MPI_Sendrecv(
  104. ldata.data(), count, datatype, partner, tag,
  105. rdata.data(), count, datatype, partner, tag,
  106. MPI_COMM_WORLD, &status
  107. )) != MPI_SUCCESS)
  108. mpi_throw(err, "(MPI) MPI_Sendrecv() [data] - ");
  109. }
  110. /*!
  111. * Exchange a data object with partner as part of the sorting network of both bubbletonic
  112. * or bitonic sorting algorithms.
  113. *
  114. * This function matches a transmit and a receive in order for fully exchanged the data object
  115. * between current node and partner.
  116. *
  117. * @tparam T The object type
  118. *
  119. * @param local [const T&] Reference to the local object to send
  120. * @param remote [T&] Reference to the object to receive data from partner
  121. * @param partner [mpi_id_t] The partner for the exchange
  122. * @param tag [int] The tag to use for the MPI communication
  123. */
  124. template<typename T>
  125. void exchange_it(const T& local, T& remote, ID_t partner, int tag) {
  126. if (tag < 0)
  127. throw std::runtime_error("(MPI) exchange_it() [tag] - Out of bound");
  128. MPI_Status status;
  129. int err;
  130. if ((err = MPI_Sendrecv(
  131. &local, sizeof(T), MPI_BYTE, partner, tag,
  132. &remote, sizeof(T), MPI_BYTE, partner, tag,
  133. MPI_COMM_WORLD, &status
  134. )) != MPI_SUCCESS)
  135. mpi_throw(err, "(MPI) MPI_Sendrecv() [item] - ");
  136. }
  137. // Accessors
  138. [[nodiscard]] ID_t rank() const noexcept { return rank_; }
  139. [[nodiscard]] ID_t size() const noexcept { return size_; }
  140. [[nodiscard]] const std::string& name() const noexcept { return name_; }
  141. // Mutators
  142. ID_t rank(ID_t rank) noexcept { return rank_ = rank; }
  143. ID_t size(ID_t size) noexcept { return size_ = size; }
  144. std::string& name(const std::string& name) noexcept { return name_ = name; }
  145. /*!
  146. * Finalized the MPI
  147. */
  148. void finalize() {
  149. // Finalize the MPI environment
  150. initialized_ = false;
  151. MPI_Finalize();
  152. }
  153. //! RAII MPI finalization
  154. ~MPI_t() {
  155. // Finalize the MPI environment even on unexpected errors
  156. if (initialized_)
  157. MPI_Finalize();
  158. }
  159. // Local functionality
  160. private:
  161. /*!
  162. * Throw exception helper. It bundles the prefix msg with the MPI error string retrieved by
  163. * MPI API.
  164. *
  165. * @param err The MPI error code
  166. * @param prefixMsg The prefix text for the exception error message
  167. */
  168. void mpi_throw(int err, const char* prefixMsg) {
  169. char err_msg[MPI_MAX_ERROR_STRING];
  170. int msg_len;
  171. MPI_Error_string(err, err_msg, &msg_len);
  172. throw std::runtime_error(prefixMsg + std::string (err_msg) + '\n');
  173. }
  174. private:
  175. ID_t rank_{}; //!< MPI rank of the process
  176. ID_t size_{}; //!< MPI total size of the execution
  177. std::string name_{}; //!< The name of the local machine
  178. bool initialized_{}; //!< RAII helper flag
  179. };
  180. /*
  181. * Exported data types
  182. */
  183. extern MPI_t<> mpi;
  184. using mpi_id_t = MPI_t<>::ID_t;
  185. /*!
  186. * @brief A std::vector wrapper with 2 vectors, an active and a shadow.
  187. *
  188. * This type exposes the standard vector
  189. * functionality of the active vector. The shadow can be used when we need to use the vector as mutable
  190. * data in algorithms that can not support "in-place" editing (like elbow-sort for example)
  191. *
  192. * @tparam Value_t the underlying data type of the vectors
  193. */
  194. template <typename Value_t>
  195. struct ShadowedVec_t {
  196. // STL requirements
  197. using value_type = Value_t;
  198. using iterator = typename std::vector<Value_t>::iterator;
  199. using const_iterator = typename std::vector<Value_t>::const_iterator;
  200. using size_type = typename std::vector<Value_t>::size_type;
  201. // Default constructor
  202. ShadowedVec_t() = default;
  203. // Constructor from an std::vector
  204. explicit ShadowedVec_t(const std::vector<Value_t>& vec)
  205. : North(vec), South(), active(north) {
  206. South.resize(North.size());
  207. }
  208. explicit ShadowedVec_t(std::vector<Value_t>&& vec)
  209. : North(std::move(vec)), South(), active(north) {
  210. South.resize(North.size());
  211. }
  212. // Copy assignment operator
  213. ShadowedVec_t& operator=(const ShadowedVec_t& other) {
  214. if (this != &other) { // Avoid self-assignment
  215. North = other.North;
  216. South = other.South;
  217. active = other.active;
  218. }
  219. return *this;
  220. }
  221. // Move assignment operator
  222. ShadowedVec_t& operator=(ShadowedVec_t&& other) noexcept {
  223. if (this != &other) { // Avoid self-assignment
  224. North = std::move(other.North);
  225. South = std::move(other.South);
  226. active = other.active;
  227. // There is no need to zero out other since it is valid but in a non-defined state
  228. }
  229. return *this;
  230. }
  231. // Type accessors
  232. std::vector<Value_t>& getActive() { return (active == north) ? North : South; }
  233. std::vector<Value_t>& getShadow() { return (active == north) ? South : North; }
  234. const std::vector<Value_t>& getActive() const { return (active == north) ? North : South; }
  235. const std::vector<Value_t>& getShadow() const { return (active == north) ? South : North; }
  236. // Swap vectors
  237. void switch_active() { active = (active == north) ? south : north; }
  238. // Dispatch vector functionality to active vector
  239. Value_t& operator[](size_type index) { return getActive()[index]; }
  240. const Value_t& operator[](size_type index) const { return getActive()[index]; }
  241. Value_t& at(size_type index) { return getActive().at(index); }
  242. const Value_t& at(size_type index) const { return getActive().at(index); }
  243. void push_back(const Value_t& value) { getActive().push_back(value); }
  244. void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
  245. void pop_back() { getActive().pop_back(); }
  246. Value_t& front() { return getActive().front(); }
  247. Value_t& back() { return getActive().back(); }
  248. const Value_t& front() const { return getActive().front(); }
  249. const Value_t& back() const { return getActive().back(); }
  250. iterator begin() { return getActive().begin(); }
  251. const_iterator begin() const { return getActive().begin(); }
  252. iterator end() { return getActive().end(); }
  253. const_iterator end() const { return getActive().end(); }
  254. size_type size() const { return getActive().size(); }
  255. void resize(size_t new_size) {
  256. North.resize(new_size);
  257. South.resize(new_size);
  258. }
  259. void reserve(size_t new_capacity) {
  260. North.reserve(new_capacity);
  261. South.reserve(new_capacity);
  262. }
  263. [[nodiscard]] size_t capacity() const { return getActive().capacity(); }
  264. [[nodiscard]] bool empty() const { return getActive().empty(); }
  265. void clear() { getActive().clear(); }
  266. void swap(std::vector<Value_t>& other) { getActive().swap(other); }
  267. // Comparisons
  268. bool operator== (const ShadowedVec_t& other) { return getActive() == other.getActive(); }
  269. bool operator!= (const ShadowedVec_t& other) { return getActive() != other.getActive(); }
  270. bool operator== (const std::vector<value_type>& other) { return getActive() == other; }
  271. bool operator!= (const std::vector<value_type>& other) { return getActive() != other; }
  272. private:
  273. std::vector<Value_t> North{}; //!< Actual buffer to be used either as active or shadow
  274. std::vector<Value_t> South{}; //!< Actual buffer to be used either as active or shadow
  275. enum {
  276. north, south
  277. } active{north}; //!< Flag to select between North and South buffer
  278. };
  279. /*
  280. * Exported data types
  281. */
  282. using distBuffer_t = ShadowedVec_t<distValue_t>;
  283. extern distBuffer_t Data;
  284. /*!
  285. * A Logger for entire program.
  286. */
  287. struct Log {
  288. struct Endl {} endl; //!< a tag object to to use it as a new line request.
  289. //! We provide logging via << operator
  290. template<typename T>
  291. Log &operator<<(T &&t) {
  292. if (config.verbose) {
  293. if (line_) {
  294. std::cout << "[Log]: " << t;
  295. line_ = false;
  296. } else
  297. std::cout << t;
  298. }
  299. return *this;
  300. }
  301. // overload for special end line handling
  302. Log &operator<<(Endl e) {
  303. (void) e;
  304. if (config.verbose) {
  305. std::cout << '\n';
  306. line_ = true;
  307. }
  308. return *this;
  309. }
  310. private:
  311. bool line_{true};
  312. };
  313. extern Log logger;
  314. /*!
  315. * A small timing utility based on chrono.
  316. */
  317. struct Timing {
  318. using Tpoint = std::chrono::steady_clock::time_point;
  319. using Tduration = std::chrono::microseconds;
  320. using microseconds = std::chrono::microseconds;
  321. using milliseconds = std::chrono::milliseconds;
  322. using seconds = std::chrono::seconds;
  323. //! tool to mark the starting point
  324. Tpoint start() noexcept { return mark_ = std::chrono::steady_clock::now(); }
  325. //! tool to mark the ending point
  326. Tpoint stop() noexcept {
  327. Tpoint now = std::chrono::steady_clock::now();
  328. duration_ += dt(now, mark_);
  329. return now;
  330. }
  331. //! A duration calculation utility
  332. static Tduration dt(Tpoint t2, Tpoint t1) noexcept {
  333. return std::chrono::duration_cast<Tduration>(t2 - t1);
  334. }
  335. //! Tool to print the time interval
  336. void print_duration(const char *what, mpi_id_t rank) noexcept {
  337. if (std::chrono::duration_cast<microseconds>(duration_).count() < 10000)
  338. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  339. << std::to_string(std::chrono::duration_cast<microseconds>(duration_).count()) << " [usec]\n";
  340. else if (std::chrono::duration_cast<milliseconds>(duration_).count() < 10000)
  341. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  342. << std::to_string(std::chrono::duration_cast<milliseconds>(duration_).count()) << " [msec]\n";
  343. else
  344. std::cout << "[Timing] (Rank " << rank << ") " << what << ": "
  345. << std::to_string(std::chrono::duration_cast<seconds>(duration_).count()) << " [sec]\n";
  346. }
  347. private:
  348. Tpoint mark_{};
  349. Tduration duration_{};
  350. };
  351. /*!
  352. * Utility "high level function"-like macro to forward a function call
  353. * and accumulate the execution time to the corresponding timing object.
  354. *
  355. * @param Tim The Timing object [Needs to have methods start() and stop()]
  356. * @param Func The function name
  357. * @param ... The arguments to pass to function (the preprocessor way)
  358. */
  359. #define timeCall(Tim, Func, ...) \
  360. Tim.start(); \
  361. Func(__VA_ARGS__); \
  362. Tim.stop(); \
  363. #endif /* UTILS_HPP_ */