/**
 * \file    matrix.hpp
 * \brief   A matrix abstraction implementation
 *
 * \author
 *    Christos Choutouridis AEM:8997
 *    <cchoutou@ece.auth.gr>
 */
#ifndef MATRIX_HPP_
#define MATRIX_HPP_

#include <type_traits>
#include <utility>
#include <algorithm>
#include <vector>
#include <tuple>

namespace mtx {

using std::size_t;

/*
 * Small helper to strip types
 */
template<typename T>
struct remove_cvref {
    typedef std::remove_cv_t<std::remove_reference_t<T>> type;
};
template<typename T>
using remove_cvref_t = typename remove_cvref<T>::type;

/*!
 * Enumerator to denote the storage type of the array to use.
 */
enum class MatrixType {
   DENSE,      /*!< Matrix is dense */
   SPARSE,     /*!< Matrix is sparse */
};

/*!
 * Enumerator to denote the storage type of the array to use.
 */
enum class MatrixOrder {
   COLMAJOR,     /*!< Matrix is column major */
   ROWMAJOR,     /*!< Matrix is row major */
};

/*
 * Forward type declarations
 */

template<typename MatrixType> struct MatCol;
template<typename MatrixType> struct MatRow;
template<typename MatrixType> struct MatVal;

 /*!
 * A 2-D matrix functionality over a 1-D array
 *
 * This is a very thin abstraction layer over a native array.
 * This is tested using compiler explorer and our template produce
 * almost identical assembly.
 *
 * The penalty hit we have is due to the fact that we use a one dimension array
 * and we have to calculate the actual position from an (i,j) pair.
 * The use of 1D array was our intention from the beginning, so the penalty
 * was pretty much unavoidable.
 *
 * \tparam DataType  The underling data type of the array
 * \tparam IndexType The underling type for the index variables and sizes
 * \tparam Type      The storage type of the array
 *    \arg  FULL              For full matrix
 *    \arg  SYMMETRIC         For symmetric matrix (we use only the lower part)
 */
template<typename DataType,
         typename IndexType = size_t,
         MatrixType Type    = MatrixType::DENSE,
         MatrixOrder Order  = MatrixOrder::ROWMAJOR,
         bool Symmetric     = false>
struct Matrix {

   using dataType    = DataType;                   //!< meta:export of underling data type
   using indexType   = IndexType;                  //!< meta:export of underling index type
   static constexpr MatrixOrder matrixOrder = Order; //!< meta:export of array order
   static constexpr MatrixType matrixType = Type;  //!< meta:export of array type
   static constexpr bool symmetric = Symmetric;    //!< meta:export symmetric flag

   /*!
    * \name Obj lifetime
    */
   //! @{

   //! Construct an empty matrix with dimensions rows x columns
   Matrix(IndexType rows = IndexType{}, IndexType columns = IndexType{}) noexcept
       : vector_storage_(capacity(rows, columns)),
         raw_storage_(nullptr),
         use_vector_(true),
         rows_(rows),
         cols_(columns) {
       data_ = vector_storage_.data();
    }

   //! Construct a matrix by copying existing data with dimensions rows x columns
   Matrix(DataType* data, IndexType major_start, IndexType major_length, IndexType minor_length) noexcept
      :  vector_storage_(),
         raw_storage_ (data + major_start * minor_length),
         use_vector_ (false) {
      if constexpr (Order == MatrixOrder::ROWMAJOR) {
         rows_ = major_length;
         cols_ = minor_length;
      }
      else {
         rows_ = minor_length;
         cols_ = major_length;
      }
      data_ = raw_storage_;
   }

   //! Construct a matrix using an initializer list
   Matrix(IndexType rows, IndexType columns, std::initializer_list<DataType> list)
      : vector_storage_(list),
        raw_storage_(nullptr),
        use_vector_(true),
        rows_(rows),
        cols_(columns) {
      if (list.size() != capacity(rows, columns)) {
          throw std::invalid_argument("Matrix initializer list size does not match matrix dimensions.");
      }
      data_ = vector_storage_.data();
   }

   //! move ctor
   Matrix(Matrix&& m) noexcept { moves(std::move(m)); }
   //! move
   Matrix& operator=(Matrix&& m) noexcept { moves(std::move(m)); return *this; }
   Matrix(const Matrix& m)             = delete;  //!< No copy ctor
   Matrix& operator=(const Matrix& m)  = delete;  //!< No copy
   //Matrix(const Matrix& m);
   //Matrix& operator=(const Matrix& m) { copy(m); }

   //! @}

   //! \name Data exposure
   //! @{


   //! Get/Set the size of each dimension
   IndexType rows() const noexcept { return rows_; }
   IndexType columns() const noexcept { return cols_; }

   //! Get the interface size of the Matrix (what appears to be the size)
   IndexType size() const {
      return rows_ * cols_;
   }
   //! Set the interface size of the Matrix (what appears to be the size)
   IndexType resize(IndexType rows, IndexType columns) {
      if (use_vector_) {
         rows_ = rows;
         cols_ = columns;
         vector_storage_.resize(capacity(rows_, cols_));
         data_ = vector_storage_.data();
      }
      return capacity(rows_, cols_);
   }

   //! Actual memory capacity of the symmetric matrix
   static constexpr IndexType capacity(IndexType M, IndexType N) {
      if constexpr (Symmetric)
         return (M+1)*N/2;
      else
         return M*N;
   }

   /*
    * virtual 2D accessors
    */
   DataType get (IndexType i, IndexType j) {
      if constexpr (Symmetric) {
         auto T = [](size_t i)->size_t { return i*(i+1)/2; };          // Triangular number of i
         if constexpr (Order == MatrixOrder::COLMAJOR) {
            // In column major we use the lower triangle of the matrix
            if (i>=j)   return data_[j*rows_ - T(j) + i];  // Lower, use our notation
            else        return data_[i*rows_ - T(i) + j];  // Upper, use opposite index
         }
         else {
            // In row major we use the upper triangle of the matrix
            if (i<=j)   return data_[i*cols_ - T(i) + j];  // Upper, use our notation
            else        return data_[j*cols_ - T(j) + i];  // Lower, use opposite index
         }
      }
      else {
         if constexpr (Order == MatrixOrder::COLMAJOR)
            return data_[i + j*rows_];
         else
            return data_[i*cols_ + j];
      }
   }

   /*!
    * \fn DataType set(DataType, IndexType, IndexType)
    * \param v
    * \param i
    * \param j
    * \return
    */
   DataType set (DataType v, IndexType i, IndexType j) {
      if constexpr (Symmetric) {
         auto T = [](size_t i)->size_t { return i*(i+1)/2; };          // Triangular number of i
         if constexpr (Order == MatrixOrder::COLMAJOR) {
            // In column major we use the lower triangle of the matrix
            if (i>=j)   return data_[j*rows_ - T(j) + i] = v;  // Lower, use our notation
            else        return data_[i*rows_ - T(i) + j] = v;  // Upper, use opposite index
         }
         else {
            // In row major we use the upper triangle of the matrix
            if (i<=j)   return data_[i*cols_ - T(i) + j] = v;  // Upper, use our notation
            else        return data_[j*cols_ - T(j) + i] = v;  // Lower, use opposite index
         }
      }
      else {
         if constexpr (Order == MatrixOrder::COLMAJOR)
            return data_[i + j*rows_] = v;
         else
            return data_[i*cols_ + j] = v;
      }
   }
//   DataType operator()(IndexType i, IndexType j) { return get(i, j); }
   /*!
    * Return a proxy MatVal object with read and write capabilities.
    * @param i    The row number
    * @param j    The column number
    * @return     tHE MatVal object
    */
   MatVal<Matrix> operator()(IndexType i, IndexType j) noexcept {
      return MatVal<Matrix>(this, get(i, j), i, j);
   }

   // a basic serial iterator support
   DataType* data() noexcept { return data_; }
   DataType* begin() noexcept { return data_; }
   const DataType* begin() const noexcept { return data_; }
   DataType* end() noexcept { return data_ + capacity(rows_, cols_); }
   const DataType* end() const noexcept { return data_ + capacity(rows_, cols_); }

//   IndexType begin_idx() noexcept { return 0; }
//   IndexType end_idx()   noexcept { return capacity(rows_, cols_); }

   const DataType* data() const noexcept { return data_; }
   const IndexType begin_idx() const noexcept { return 0; }
   const IndexType end_idx()   const noexcept { return capacity(rows_, cols_); }
   //! @}

   /*!
    * \name Safe iteration API
    *
    * This api automates the iteration over the array based on
    * MatrixType
    */
   //! @{
   template<typename F, typename... Args>
   void for_each_in (IndexType begin, IndexType end, F&& lambda, Args&&... args) {
      for (IndexType it=begin ; it<end ; ++it) {
         std::forward<F>(lambda)(std::forward<Args>(args)..., it);
      }
   }
   //! @}

   //
   void swap(Matrix& src) noexcept {
      std::swap(vector_storage_, src.vector_storage_);
      std::swap(raw_storage_, src.raw_storage_);
      std::swap(data_, src.data_);
      std::swap(use_vector_, src.use_vector_);
      std::swap(rows_, src.rows_);
      std::swap(cols_, src.cols_);
   }

private:
   //! move helper
   void moves(Matrix&& src) noexcept {
      vector_storage_ = std::move(src.vector_storage_);
      raw_storage_    = std::move(src.raw_storage_);
      data_           = std::move(src.data_);
      use_vector_     = std::move(src.use_vector_);
      rows_           = std::move(src.rows_);
      cols_           = std::move(src.cols_);
   }

   // Storage
   std::vector<DataType>
               vector_storage_;  //!< Internal storage (if used).
   DataType*   raw_storage_;     //!< External storage (if used).
   DataType*   data_;            //!< Pointer to active storage.
   bool        use_vector_;      //!< True if using vector storage, false for raw pointer.
   IndexType   rows_{};          //!< the virtual size of rows.
   IndexType   cols_{};          //!< the virtual size of columns.
};


/**
 * A simple sparse matrix specialization.
 *
 * We use CSC format and provide get/set functionalities for each (i,j) item
 * on the matrix. We also provide a () overload using a proxy MatVal object.
 * This way the user can:
 * \code
 *    auto v = A(3,4);
 *    A(3, 4) = 7;
 * \endcode
 *
 * We also provide getCol() and getRow() functions witch return a viewer/iterator to rows and
 * columns of the matrix. In the case of a symmetric matrix instead of a row we return the
 * equivalent column. This way we gain speed due to CSC format nature.
 *
 * @tparam DataType  The type for values
 * @tparam IndexType The type for indexes
 * @tparam Type      The Matrix type (FULL or SYMMETRIC)
 */
template<typename DataType, typename IndexType,
         MatrixOrder Order,
         bool Symmetric>
struct Matrix<DataType, IndexType, MatrixType::SPARSE, Order, Symmetric> {

   using dataType    = DataType;                   //!< meta:export of underling data type
   using indexType   = IndexType;                  //!< meta:export of underling index type
   static constexpr MatrixOrder matrixOrder = Order; //!< meta:export of array order
   static constexpr MatrixType matrixType = MatrixType::SPARSE;  //!< meta:export of array type
   static constexpr bool symmetric = Symmetric;    //!< meta:export symmetric flag

   friend struct MatCol<Matrix>;
   friend struct MatRow<Matrix>;
   friend struct MatVal<Matrix>;

   /*!
    * \name Obj lifetime
    */
   //! @{

   //! Default ctor with optional memory allocations
   Matrix(IndexType n=IndexType{}) noexcept:
      values{},
      rows{},
      col_ptr((n)? n+1:2, IndexType{}),
      N(n),
      NNZ(0) { }

   //! A ctor using csc array data
   Matrix(IndexType n, IndexType nnz, const IndexType* row, const IndexType* col) noexcept:
      values(nnz, 1),
      rows(row, row+nnz),
      col_ptr(col, col+n+1),
      N(n),
      NNZ(nnz) { }

   //! ctor using csc array data with value array
   Matrix(IndexType n, IndexType nnz, const DataType* v, const IndexType* row, const IndexType* col) noexcept:
      values(v, v+nnz),
      rows(row, row+nnz),
      col_ptr(col, col+n+1),
      N(n),
      NNZ(nnz) { }

   //! ctor vectors of row/col and default value for values array
   Matrix(IndexType n, IndexType nnz, const DataType v,
          const std::vector<IndexType>& row, const std::vector<IndexType>& col) noexcept:
      values(nnz, v),
      rows (row),
      col_ptr(col),
      N(n),
      NNZ(nnz) { }

   //! move ctor
   Matrix(Matrix&& m) noexcept { moves(std::move(m)); }
   //! move
   Matrix& operator=(Matrix&& m) noexcept { moves(std::move(m)); return *this; }
   Matrix(const Matrix& m)             = delete;  //!< make sure there are no copies
   Matrix& operator=(const Matrix& m)  = delete;  //!< make sure there are no copies
   //! @}

   //! \name Data exposure
   //! @{

   //! \return the dimension of the matrix
   IndexType size()     noexcept { return N; }
   //! After construction size configuration tool
   IndexType resize(IndexType n) {
      col_ptr.resize(n+1);
      return N = n;
   }
   //! \return the NNZ of the matrix
   IndexType capacity() noexcept { return NNZ; }
   //! After construction NNZ size configuration tool
   IndexType capacity(IndexType nnz) noexcept {
      values.reserve(nnz);
      rows.reserve(nnz);
      return NNZ;
   }
   // getters for row arrays of the struct (unused)
   std::vector<DataType>&  getValues() noexcept { return values; }
   std::vector<IndexType>& getRows() noexcept { return rows; }
   std::vector<IndexType>& getCols() noexcept { return col_ptr; }

   /*!
    * Return a proxy MatVal object with read and write capabilities.
    * @param i    The row number
    * @param j    The column number
    * @return     tHE MatVal object
    */
   MatVal<Matrix> operator()(IndexType i, IndexType j) noexcept {
      return MatVal<Matrix>(this, get(i, j), i, j);
   }

   /*!
    * A read item functionality using binary search to find the correct row
    *
    * @param i    The row number
    * @param j    The column number
    * @return     The value of the item or DataType{} if is not present.
    */
   DataType get(IndexType i, IndexType j) noexcept {
      IndexType idx; bool found;
      std::tie(idx, found) =find_idx(rows, col_ptr[j], col_ptr[j+1], i);
      return (found) ? values[idx] : 0;
   }

   /*!
    * A write item functionality.
    *
    * First we search if the matrix has already a value in (i, j) position.
    * If so we just change it to a new value. If not we add the item on the matrix.
    *
    * @note
    *    When change a value, we don't increase the NNZ value of the struct. We expect the user has already
    *    change the NNZ value to the right one using @see capacity() function. When adding a value we
    *    increase the NNZ.
    *
    * @param i    The row number
    * @param j    The column number
    * @return     The new value of the item .
    */
   DataType set(DataType v, IndexType i, IndexType j) {
      IndexType idx; bool found;
      std::tie(idx, found) = find_idx(rows, col_ptr[j], col_ptr[j+1], i);
      if (found)
         return values[idx] = v;    // we don't change NNZ even if we write "0"
      else {
         values.insert(values.begin()+idx, v);
         rows.insert(rows.begin()+idx, i);
         std::transform(col_ptr.begin()+j+1, col_ptr.end(), col_ptr.begin()+j+1, [](IndexType it) {
            return ++it;
         });
         ++NNZ;                     // we increase the NNZ even if we write "0"
         return v;
      }
   }

   /*!
    * Get a view of a CSC column
    * @param j    The column to get
    * @return     The MatCol object @see MatCol
    */
   MatCol<Matrix> getCol(IndexType j) noexcept {
      return MatCol<Matrix>(this, col_ptr[j], col_ptr[j+1]);
   }

   /*!
    * Get a view of a CSC row
    *
    * In case of a SYMMETRIC matrix we can return a column instead.
    *
    * @param j    The row to get
    * @return     On symmetric matrix MatCol otherwise a MatRow
    */

   MatCol<Matrix> getRow(IndexType i) noexcept {
      if constexpr (Symmetric)
         return getCol(i);
      else
         return MatRow<Matrix>(this, i);
   }

   // values only iterator support
   DataType* begin() noexcept { return values.begin(); }
   DataType* end()   noexcept { return values.end(); }
   //! @}

   //! A small iteration helper
   template<typename F, typename... Args>
   void for_each_in (IndexType begin, IndexType end, F&& lambda, Args&&... args) {
      for (IndexType it=begin ; it<end ; ++it) {
         std::forward<F>(lambda)(std::forward<Args>(args)..., it);
      }
   }

private:
   /*!
    * A small binary search implementation using index for begin-end instead of iterators.
    *
    * \param   v     Reference to vector to search
    * \param   begin The vector's index to begin
    * \param   end   The vector's index to end
    * \param   match What to search
    * \return  An <index, status> pair.
    *                index    is the index of the item or end if not found
    *                status   is true if found, false otherwise
    */
   std::pair<IndexType, bool> find_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) {
      if (v.capacity() != 0 && begin < end) {
         IndexType b = begin, e = end-1;
         while (b <= e) {
            IndexType m = (b+e)/2;
            if       (v[m] == match)   return  std::make_pair(m, true);
            else if  (b >= e)          return  std::make_pair(end, false);
            else {
               if    (v[m] <  match)   b = m +1;
               else                    e = m -1;
            }
         }
      }
      return std::make_pair(end, false);
   }

   // move helper
   void moves(Matrix&& src) noexcept {
      values  = std::move(src.values);
      rows    = std::move(src.rows);
      col_ptr = std::move(src.col_ptr);
      N       = std::move(src.N);   // redundant for primitives
      NNZ     = std::move(src.NNZ); //
   }
   //! \name Data
   //! @{
   std::vector<DataType>   values {};     //!< vector to store the values of the matrix
   std::vector<IndexType>  rows{};        //!< vector to store the row information
   std::vector<IndexType>  col_ptr{1,0};  //!< vector to store the column pointers
   IndexType   N{0};                      //!< The dimension of the matrix (square)
   IndexType   NNZ{0};                    //!< The NNZ (capacity of the matrix)
   //! @}
};


/*!
 * A view/iterator hybrid object for Matrix columns.
 *
 * This object provides access to a column of a Matrix. The public functionalities
 * allow data access using indexes instead of iterators. We prefer indexes over iterators
 * because we can apply the same index to different inner vector of Matrix without conversion.
 *
 * @tparam DataType
 * @tparam IndexType
 */
template<typename MatrixType>
struct MatCol {
   using owner_t = MatrixType;

   using DataType  = typename MatrixType::dataType;
   using IndexType = typename MatrixType::indexType;

   /*!
    * ctor using column pointers for begin-end. own is pointer to Matrix.
    */
   MatCol(owner_t* own, const IndexType begin, const IndexType end) noexcept :
      owner_(own), index_(begin), begin_(begin), end_(end) {
      vindex_ = vIndexCalc(index_);
   }
   MatCol()                        = default;
   MatCol(const MatCol&)           = delete;   //!< make sure there are no copies
   MatCol& operator=(const MatCol&)= delete;   //!< make sure there are no copies
   MatCol(MatCol&&)                = default;
   MatCol& operator=(MatCol&&)     = default;

   //! a simple dereference operator, like an iterator
   DataType operator* () {
      return get();
   }
   //! Increment operator acts on index(), like an iterator
   MatCol& operator++ ()    { advance(); return *this; }
   MatCol& operator++ (int) { MatCol& p = *this; advance(); return p; }

   //! () operator acts as member access (like a view)
   DataType operator()(IndexType x) {
      return (x == index())? get() : DataType{};
   }
   //! = operator acts as member assignment (like a view)
   DataType operator= (DataType v) { return owner_->values[index_] = v; }
   // iterator like handlers
   // these return a virtual index value based on the items position on the full matrix
   // but the move of the index is just a ++ away.
   IndexType       index()       noexcept { return vindex_; }
   const IndexType index() const noexcept { return vindex_; }
   IndexType       begin()       noexcept { return vIndexCalc(begin_); }
   const IndexType begin() const noexcept { return vIndexCalc(begin_); }
   IndexType       end()         noexcept { return owner_->N; }
   const IndexType end()   const noexcept { return owner_->N; }

   /*!
    * Multiplication operator
    *
    * We follow only the non-zero values and multiply only the common indexes.
    *
    * @tparam C   Universal reference for the type right half site column
    *
    * @param c    The right hand site matrix
    * @return     The value of the inner product of two vectors
    * @note       The time complexity is \$ O(nnz1+nnz2) \$.
    *             Where the nnz is the max NNZ elements of the column of the matrix
    */
   template <typename C>
   DataType operator* (C&& c) {
      static_assert(std::is_same<remove_cvref_t<C>, MatCol<MatrixType>>(), "");
      DataType v{};
      while (index() != end() && c.index() != c.end()) {
         if      (index() < c.index())  advance(); // advance me
         else if (index() > c.index())  ++c;       // advance other
         else { //index() == c.index()
            v += get() * *c;                       // multiply and advance both
            ++c;
            advance();
         }
      }
      return v;
   }

private:
   //! small tool to increase the index pointers to Matrix
   void advance() noexcept {
      ++index_;
      vindex_ = vIndexCalc(index_);
   }
   //! tool to translate between col_ptr indexes and Matrix "virtual" full matrix indexes
   IndexType vIndexCalc(IndexType idx) {
      return (idx < end_) ? owner_->rows[idx] : end();
   }
   //! small get tool
   DataType get() { return owner_->values[index_]; }

   owner_t*    owner_   {nullptr};     //!< Pointer to owner Matrix. MatCol is just a view
   IndexType   vindex_  {IndexType{}}; //!< Virtual index of full matrix
   IndexType   index_   {IndexType{}}; //!< index to Matrix::rows
   IndexType   begin_   {IndexType{}}; //!< beginning index of the column in Matrix::rows
   IndexType   end_     {IndexType{}}; //!< ending index of the column in Matrix::rows
};

/*!
 * A view/iterator hybrid object for Matrix rows.
 *
 * This object provides access to a column of a Matrix. The public functionalities
 * allow data access using indexes instead of iterators. We prefer indexes over iterators
 * because we can apply the same index to different inner vector of Matrix without conversion.
 *
 * @tparam DataType
 * @tparam IndexType
 */
template<typename MatrixType>
struct MatRow {
   using owner_t = MatrixType;

   using DataType  = typename MatrixType::dataType;
   using IndexType = typename MatrixType::indexType;

   /*!
    * ctor using virtual full matrix row index. own is pointer to Matrix.
    */
   MatRow(owner_t* own, const IndexType row) noexcept :
      owner_(own), vindex_(IndexType{}), row_(row), index_(IndexType{}),
      begin_(IndexType{}), end_(owner_->NNZ) {
      // place begin
      while(begin_ != end_ && owner_->rows[begin_] != row_)
         ++begin_;
      // place index_ and vindex_
      if (owner_->rows[index_] != row_)
         advance();
   }
   MatRow()                        = default;
   MatRow(const MatRow&)           = delete;   //!< make sure there are no copies
   MatRow& operator=(const MatRow&)= delete;   //!< make sure there are no copies
   MatRow(MatRow&&)                = default;
   MatRow& operator=(MatRow&&)     = default;

   //! a simple dereference operator, like an iterator
   DataType operator* () {
      return get();
   }
   //! Increment operator acts on index(), like an iterator
   //! here the increment is a O(N) process.
   MatRow& operator++ ()    { advance(); return *this; }
   MatRow& operator++ (int) { MatRow& p = *this; advance(); return p; }

   //! () operator acts as member access (like a view)
   DataType operator()(IndexType x) {
      return (x == index())? get() : DataType{};
   }
   //! = operator acts as member assignment (like a view)
   DataType operator= (DataType v) { return owner_->values[index_] = v; }
   // iterator like handlers
   // these return a virtual index value based on the items position on the full matrix
   // but the move of the index is just a ++ away.
   IndexType       index()       noexcept { return vindex_; }
   const IndexType index() const noexcept { return vindex_; }
   IndexType       begin()       noexcept { return vIndexCalc(begin_); }
   const IndexType begin() const noexcept { return vIndexCalc(begin_); }
   IndexType       end()         noexcept { return owner_->N; }
   const IndexType end()   const noexcept { return owner_->N; }

   /*!
    * Multiplication operator
    *
    * We follow only the non-zero values and multiply only the common indexes.
    *
    * @tparam C   Universal reference for the type right half site column
    *
    * @param c    The right hand site matrix
    * @return     The value of the inner product of two vectors
    * @note       The time complexity is \$ O(N+nnz2) \$ and way heavier the ColxCol multiplication.
    *             Where the nnz is the max NNZ elements of the column of the matrix
    */
   template <typename C>
   DataType operator* (C&& c) {
      static_assert(std::is_same<remove_cvref_t<C>, MatCol<MatrixType>>(), "");
      DataType v{};
      while (index() != end() && c.index() != c.end()) {
         if      (index() < c.index())  advance(); // advance me
         else if (index() > c.index())  ++c;       // advance other
         else { //index() == c.index()
            v += get() * *c;                       // multiply and advance both
            ++c;
            advance();
         }
      }
      return v;
   }
private:
   //! small tool to increase the index pointers to Matrix matrix
   //! We have to search the entire rows vector in Matrix to find the next
   //! virtual row position.
   //! time complexity O(N)
   void advance() noexcept {
      do
         ++index_;
      while(index_ != end_ && owner_->rows[index_] != row_);
      vindex_ = vIndexCalc(index_);
   }
   //! tool to translate between col_ptr indexes and Matrix "virtual" full matrix indexes
   IndexType vIndexCalc(IndexType idx) {
      for(IndexType i =0 ; i<(owner_->N+1) ; ++i)
         if (idx < owner_->col_ptr[i])
            return i-1;
      return end();
   }
   //! small get tool
   DataType get() { return owner_->values[index_]; }

   owner_t*    owner_   {nullptr};     //!< Pointer to owner Matrix. MatCol is just a view
   IndexType   vindex_  {IndexType{}}; //!< Virtual index of full matrix
   IndexType   row_     {IndexType{}}; //!< The virtual full matrix row of the object
   IndexType   index_   {IndexType{}}; //!< index to Matrix::rows
   IndexType   begin_   {IndexType{}}; //!< beginning index of the column in Matrix::rows
   IndexType   end_     {IndexType{}}; //!< ending index of the column in Matrix::rows
};

/*!
 * A proxy Matrix value object/view.
 *
 * This object acts as proxy to provide read/write access to an Matrix item.
 *
 * @tparam DataType     The type of the values of the Matrix matrix
 * @tparam IndexType    The type of the indexes of the Matrix matrix
 */
template<typename MatrixType>
struct MatVal {
   using owner_t = MatrixType;

   using DataType  = typename MatrixType::dataType;
   using IndexType = typename MatrixType::indexType;

   //!< ctor using all value-row-column data, plus a pointer to owner Matrix object
   MatVal(owner_t* own, DataType v, IndexType i, IndexType j) :
      owner_(own), v_(v), i_(i), j_(j) { }
   MatVal()                         = default;
   MatVal(const MatVal&)            = delete;  //!< make sure there are no copies
   MatVal& operator=(const MatVal&) = delete;  //!< make sure there are no copies
   MatVal(MatVal&&)                 = default;
   MatVal& operator=(MatVal&&)      = default;

   //! Operator to return the DataType value implicitly
   operator DataType() { return v_; }
   //! Operator to write back to owner the assigned value
   //! for ex: A(2,3) = 5;
   MatVal& operator=(DataType v) {
      v_ = v;
      owner_->set(v_, i_, j_);
      return *this;
   }
private:
   owner_t*    owner_{nullptr};  //!< Pointer to owner Matrix. MatVal is just a view.
   DataType    v_{DataType{}};   //!< The value of the row-column pair (for speed)
   IndexType   i_{IndexType{}};  //!< The row
   IndexType   j_{IndexType{}};  //!< the column
};


} // namespace mtx


#endif /* MATRIX_HPP_ */