Procházet zdrojové kódy

HW2: Added some test and fix bubblesort <number of iteration> bug

tags/v2.0
Christos Choutouridis před 3 týdny
rodič
revize
9dd3eb737f
8 změnil soubory, kde provedl 345 přidání a 272 odebrání
  1. +12
    -1
      homework_2/include/config.h
  2. +13
    -13
      homework_2/include/distsort.hpp
  3. +113
    -63
      homework_2/include/utils.hpp
  4. +2
    -2
      homework_2/src/main.cpp
  5. +0
    -64
      homework_2/test/tests_Bitonic.cpp
  6. +0
    -66
      homework_2/test/tests_Bubbletonic.cpp
  7. +0
    -63
      homework_2/test/tests_Common.cpp
  8. +205
    -0
      homework_2/test/tests_MPI.cpp

+ 12
- 1
homework_2/include/config.h Zobrazit soubor

@@ -24,7 +24,18 @@
#define CODE_VERSION BITONIC
#endif

// Value type selection
/*!
* Value type selection
*
* We support the following compiler types or the <cstdint> that translate to them:
* char - unsigned char
* short - unsigned short
* int - unsigned int
* long - unsigned long
* long long - unsigned long long
* float
* double
*/
using distValue_t = uint32_t;

/*!


+ 13
- 13
homework_2/include/distsort.hpp Zobrazit soubor

@@ -267,26 +267,26 @@ void minmax(RangeT& local, const RangeT& remote, bool keepSmall) noexcept {
* @param Processes [mpi_id_t] The total number of MPI processes
*/
template<typename ShadowedT>
void distBubbletonic(ShadowedT& data, mpi_id_t Processes) {
void distBubbletonic(ShadowedT& data, mpi_id_t Processes, mpi_id_t rank) {
// Initially sort to create a half part of a bitonic sequence
fullSort(data, ascending<SortMode::Bubbletonic>(mpi.rank(), 0));
fullSort(data, ascending<SortMode::Bubbletonic>(rank, 0));

// Sort network (O(N) iterations)
for (size_t step = 0; step < static_cast<size_t>(Processes-1); ++step) {
for (size_t step = 0; step < static_cast<size_t>(Processes); ++step) {
// Find out exchange configuration
auto part = partner<SortMode::Bubbletonic>(mpi.rank(), step);
auto ks = keepSmall<SortMode::Bubbletonic>(mpi.rank(), part, Processes);
if ( isActive(mpi.rank(), Processes) &&
auto part = partner<SortMode::Bubbletonic>(rank, step);
auto ks = keepSmall<SortMode::Bubbletonic>(rank, part, Processes);
if ( isActive(rank, Processes) &&
isActive(part, Processes) ) {
// Exchange with partner, keep nim-or-max and sort - O(N)
mpi.exchange(part, data.getActive(), data.getShadow(), step);
minmax(data.getActive(), data.getShadow(), ks);
elbowSort(data, ascending<SortMode::Bubbletonic>(mpi.rank(), Processes));
elbowSort(data, ascending<SortMode::Bubbletonic>(rank, Processes));
}
}

// Invert if the node was descending.
if (!ascending<SortMode::Bubbletonic>(mpi.rank(), 0))
if (!ascending<SortMode::Bubbletonic>(rank, 0))
elbowSort(data, true);

}
@@ -304,9 +304,9 @@ void distBubbletonic(ShadowedT& data, mpi_id_t Processes) {
* @param Processes [mpi_id_t] The total number of MPI processes
*/
template<typename ShadowedT>
void distBitonic(ShadowedT& data, mpi_id_t Processes) {
void distBitonic(ShadowedT& data, mpi_id_t Processes, mpi_id_t rank) {
// Initially sort to create a half part of a bitonic sequence
fullSort(data, ascending<SortMode::Bitonic>(mpi.rank(), 0));
fullSort(data, ascending<SortMode::Bitonic>(rank, 0));

// Run through sort network using elbow-sort ( O(LogN * LogN) iterations )
auto p = static_cast<uint32_t>(std::log2(Processes));
@@ -314,14 +314,14 @@ void distBitonic(ShadowedT& data, mpi_id_t Processes) {
for (size_t step = depth; step > 0;) {
--step;
// Find out exchange configuration
auto part = partner<SortMode::Bitonic>(mpi.rank(), step);
auto ks = keepSmall<SortMode::Bitonic>(mpi.rank(), part, depth);
auto part = partner<SortMode::Bitonic>(rank, step);
auto ks = keepSmall<SortMode::Bitonic>(rank, part, depth);
// Exchange with partner, keep nim-or-max
mpi.exchange(part, data.getActive(), data.getShadow(), (depth << 8) | step);
minmax(data.getActive(), data.getShadow(), ks);
}
// sort - O(N)
elbowSort (data, ascending<SortMode::Bitonic>(mpi.rank(), depth));
elbowSort (data, ascending<SortMode::Bitonic>(rank, depth));
}
}



+ 113
- 63
homework_2/include/utils.hpp Zobrazit soubor

@@ -15,68 +15,94 @@
#include <unistd.h>
#include <mpi.h>

//#include "matrix.hpp"
#include "config.h"

template <typename T> struct MPI_TypeMapper;

// Specializations for supported types
template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
/*
* MPI_<type> dispatcher mechanism
*/
template <typename T> struct MPI_TypeMapper { };

template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
template <> struct MPI_TypeMapper<short> { static MPI_Datatype getType() { return MPI_SHORT; } };
template <> struct MPI_TypeMapper<int> { static MPI_Datatype getType() { return MPI_INT; } };
template <> struct MPI_TypeMapper<long> { static MPI_Datatype getType() { return MPI_LONG; } };
template <> struct MPI_TypeMapper<long long> { static MPI_Datatype getType() { return MPI_LONG_LONG; } };
template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
template <> struct MPI_TypeMapper<unsigned short>{ static MPI_Datatype getType() { return MPI_UNSIGNED_SHORT; } };
template <> struct MPI_TypeMapper<unsigned int> { static MPI_Datatype getType() { return MPI_UNSIGNED; } };
template <> struct MPI_TypeMapper<unsigned long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG; } };
template <> struct MPI_TypeMapper<unsigned long long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG_LONG; } };

template <> struct MPI_TypeMapper<float> { static MPI_Datatype getType() { return MPI_FLOAT; } };
template <> struct MPI_TypeMapper<double> { static MPI_Datatype getType() { return MPI_DOUBLE; } };

/*!
* MPI wrapper type to provide MPI functionality and RAII to MPI as a resource
*
* @tparam TID The MPI type for process id [default: int]
*/
template<typename TID = int>
struct MPI_t {
using ID_t = TID; // Export TID type (currently int defined by the standard)

/*!
* Initializes the MPI environment, must called from each process
*
* @param argc [int*] POINTER to main's argc argument
* @param argv [car***] POINTER to main's argv argument
*/
void init(int *argc, char ***argv) {
// Initialize the MPI environment
MPI_Init(argc, argv);
int err;
if ((err = MPI_Init(argc, argv)) != MPI_SUCCESS)
mpi_throw(err, "(MPI) MPI_Init() - ");
initialized_ = true;

// Get the number of processes
int size_value, rank_value;
MPI_Comm_size(MPI_COMM_WORLD, &size_value);
MPI_Comm_rank(MPI_COMM_WORLD, &rank_value);
if ((err = MPI_Comm_size(MPI_COMM_WORLD, &size_value)) != MPI_SUCCESS)
mpi_throw(err, "(MPI) MPI_Comm_size() - ");
if ((err = MPI_Comm_rank(MPI_COMM_WORLD, &rank_value)) != MPI_SUCCESS)
mpi_throw(err, "(MPI) MPI_Comm_rank() - ");
size_ = static_cast<ID_t>(size_value);
rank_ = static_cast<ID_t>(rank_value);

// Get the name of the processor
char processor_name[MPI_MAX_PROCESSOR_NAME];
int name_len;
MPI_Get_processor_name(processor_name, &name_len);
if ((err = MPI_Get_processor_name(processor_name, &name_len)) != MPI_SUCCESS)
mpi_throw(err, "(MPI) MPI_Get_processor_name() - ");
name_ = std::string (processor_name, name_len);
}

/*!
* Exchange data with partner as part of the sorting network of both bubbletonic or bitonic
* sorting algorithms.
*
* This function matches a transmit and a receive in order for fully exchanged data between
* current node and partner.
*
* @tparam T The inner valur type used in buffer
*
* @param partner [mpi_id_t] The partner for the exchange
* @param send_data [std::vector<T>] Reference to local data to send
* @param recv_data [std::vector<T>] Reference to buffer to receive data from partner
* @param tag [int] The tag to use for the MPI communication
*/
template<typename T>
void exchange(ID_t partner, const std::vector<T>& send_data, std::vector<T>& recv_data, int tag) {
using namespace std::string_literals;

MPI_Status status;
MPI_Datatype datatype = MPI_TypeMapper<T>::getType();
int send_count = static_cast<int>(send_data.size());
int err = MPI_Sendrecv(
MPI_Status status;
int err;
if ((err = MPI_Sendrecv(
send_data.data(), send_count, datatype, partner, tag,
recv_data.data(), send_count, datatype, partner, tag,
MPI_COMM_WORLD, &status
);
if (err != MPI_SUCCESS) {
char err_msg[MPI_MAX_ERROR_STRING];
int msg_len;
MPI_Error_string(err, err_msg, &msg_len);
throw std::runtime_error("(MPI) MPI_Sendrecv() - " + std::string (err_msg) + '\n');
}
)) != MPI_SUCCESS)
mpi_throw(err, "(MPI) MPI_Sendrecv() - ");
}

// Accessors
@@ -84,26 +110,65 @@ struct MPI_t {
[[nodiscard]] ID_t size() const noexcept { return size_; }
[[nodiscard]] const std::string& name() const noexcept { return name_; }

/*!
* Finalized the MPI
*/
void finalize() {
// Finalize the MPI environment
initialized_ = false;
MPI_Finalize();
}

//! RAII MPI finalization
~MPI_t() {
// Finalize the MPI environment even on unexpected errors
if (initialized_)
MPI_Finalize();
}


// Local functionality
private:
/*!
* Throw exception helper. It bundles the prefix with the MPI error string retrieved by
* MPI API.
*
* @param err The MPI error code
* @param prefixMsg The prefix text for the exception error message
*/
void mpi_throw(int err, const char* prefixMsg) {
char err_msg[MPI_MAX_ERROR_STRING];
int msg_len;
MPI_Error_string(err, err_msg, &msg_len);
throw std::runtime_error(prefixMsg + std::string (err_msg) + '\n');
}

#if !defined TESTING
private:
ID_t rank_{};
ID_t size_{};
std::string name_{};
bool initialized_{};
#else
public:
#endif
ID_t rank_{}; //!< MPI rank of the process
ID_t size_{}; //!< MPI total size of the execution
std::string name_{}; //!< The name of the local machine
bool initialized_{}; //!< RAII helper flag
};

/*
* Exported data types
*/
extern MPI_t<> mpi;
using mpi_id_t = MPI_t<>::ID_t;



/*!
* A std::vector wrapper with 2 vectors, an active and a shadow. This type exposes the standard vector
* functionality of the active vector. The shadow can be used when we need to use the vector as mutable
* data in algorithms that can not support "in-place" editing (like elbow-sort for example)
*
* @tparam Value_t the inner data type of the vectors
*/
template <typename Value_t>
struct ShadowedVec_t {
// STL requirements
@@ -148,7 +213,18 @@ struct ShadowedVec_t {
return *this;
}

// Dispatch to active vector
// Type accessors
const std::vector<Value_t>& getNorth() const { return North; }
const std::vector<Value_t>& getSouth() const { return South; }
std::vector<Value_t>& getActive() { return (active == north) ? North : South; }
std::vector<Value_t>& getShadow() { return (active == north) ? South : North; }
const std::vector<Value_t>& getActive() const { return (active == north) ? North : South; }
const std::vector<Value_t>& getShadow() const { return (active == north) ? South : North; }

// Switching vectors
void switch_active() { active = (active == north) ? south : north; }

// Dispatch to active vector functionality
Value_t& operator[](size_type index) { return getActive()[index]; }
const Value_t& operator[](size_type index) const { return getActive()[index]; }

@@ -156,12 +232,12 @@ struct ShadowedVec_t {
const Value_t& at(size_type index) const { return getActive().at(index); }

void push_back(const Value_t& value) { getActive().push_back(value); }
void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
void pop_back() { getActive().pop_back(); }
void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
void pop_back() { getActive().pop_back(); }
Value_t& front() { return getActive().front(); }
Value_t& back() { return getActive().back(); }
const Value_t& front() const { return getActive().front(); }
Value_t& back() { return getActive().back(); }
const Value_t& back() const { return getActive().back(); }
const Value_t& back() const { return getActive().back(); }

iterator begin() { return getActive().begin(); }
const_iterator begin() const { return getActive().begin(); }
@@ -182,46 +258,20 @@ struct ShadowedVec_t {
[[nodiscard]] bool empty() const { return getActive().empty(); }

void clear() { getActive().clear(); }

void swap(std::vector<Value_t>& other) { getActive().swap(other); }

// Switching vectors
void switch_active() { active = (active == north) ? south : north; }

// Accessors
const std::vector<Value_t>& getNorth() const { return North; }
const std::vector<Value_t>& getSouth() const { return South; }
std::vector<Value_t>& getActive() {
return (active == north) ? North : South;
}
const std::vector<Value_t>& getActive() const {
return (active == north) ? North : South;
}
std::vector<Value_t>& getShadow() {
return (active == north) ? South : North;
}
const std::vector<Value_t>& getShadow() const {
return (active == north) ? South : North;
}

// Comparisons
bool operator== (const ShadowedVec_t& other) {
return getActive() == other.getActive();
}
bool operator!= (const ShadowedVec_t& other) {
return getActive() != other.getActive();
}
bool operator== (const std::vector<value_type>& other) {
return getActive() == other;
}
bool operator!= (const std::vector<value_type>& other) {
return getActive() != other;
}
bool operator== (const ShadowedVec_t& other) { return getActive() == other.getActive(); }
bool operator!= (const ShadowedVec_t& other) { return getActive() != other.getActive(); }
bool operator== (const std::vector<value_type>& other) { return getActive() == other; }
bool operator!= (const std::vector<value_type>& other) { return getActive() != other; }

private:
std::vector<Value_t> North{};
std::vector<Value_t> South{};
enum { north, south } active{north};
std::vector<Value_t> North{}; //!< Actual buffer to be used either as active or shadow
std::vector<Value_t> South{}; //!< Actual buffer to be used either as active or shadow
enum {
north, south
} active{north}; //!< Flag to select between North and South buffer
};

using distBuffer_t = ShadowedVec_t<distValue_t>;


+ 2
- 2
homework_2/src/main.cpp Zobrazit soubor

@@ -136,9 +136,9 @@ int main(int argc, char* argv[]) try {
logger << "Starting distributed sorting ... ";
timer.start();
#if CODE_VERSION == BUBBLETONIC
distBubbletonic(Data, mpi.size());
distBubbletonic(Data, mpi.size(), mpi.rank());
#else
distBitonic (Data, mpi.size());
distBitonic (Data, mpi.size(), mpi.rank());
#endif
timer.stop();
if (mpi.rank() == 0)


+ 0
- 64
homework_2/test/tests_Bitonic.cpp Zobrazit soubor

@@ -328,67 +328,3 @@ TEST(TdistBitonic_UT, keepsmall_test7) {
EXPECT_EQ(ts_expected[node], keepSmall<SortMode::Bitonic>(node, ts_partner[node], ts_depth));
}
}

#if 0
TEST(TdistBitonic_UT, distBitonic_test1) {
AllData_t ts_Data {
ShadowedVec_t (8), ShadowedVec_t (8)
};
(unsigned(std::time(nullptr)));
for (auto
std::srand& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBitonic(2, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}

TEST(TdistBitonic_UT, distBitonic_test2) {
AllData_t ts_Data {
ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBitonic(4, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}

TEST(TdistBitonic_UT, distBitonic_test3) {
AllData_t ts_Data {
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32),
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBitonic(8, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}

#endif

+ 0
- 66
homework_2/test/tests_Bubbletonic.cpp Zobrazit soubor

@@ -142,69 +142,3 @@ TEST(TdistBubbletonic_UT, isActive_test2) {
EXPECT_EQ(isActive(8, 8), false);
EXPECT_EQ(isActive(9, 8), false);
}



#if 0
TEST(TdistBubbletonic_UT, distBubbletonic_test1) {
AllData_t ts_Data {
ShadowedVec_t (8), ShadowedVec_t (8)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBubbletonic(2, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}


TEST(TdistBubbletonic_UT, distBubbletonic_test2) {
AllData_t ts_Data {
ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBubbletonic(4, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}

TEST(TdistBubbletonic_UT, distBubbletonic_test3) {
AllData_t ts_Data {
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32),
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBubbletonic(8, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}
#endif

+ 0
- 63
homework_2/test/tests_Common.cpp Zobrazit soubor

@@ -91,66 +91,3 @@ TEST(TdistCommonUT, elbowSort_test3) {
EXPECT_EQ((ts_data == ts_expected_des), true);
}

#if 0
TEST(TdistBubbletonic_UT, distBubbletonic_test1) {
AllData_t ts_Data {
ShadowedVec_t (8), ShadowedVec_t (8)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBubbletonic(2, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}


TEST(TdistBubbletonic_UT, distBubbletonic_test2) {
AllData_t ts_Data {
ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBubbletonic(4, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}

TEST(TdistBubbletonic_UT, distBubbletonic_test3) {
AllData_t ts_Data {
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32),
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32)
};

std::srand(unsigned(std::time(nullptr)));
for (auto& v : ts_Data) {
std::generate(v.begin(), v.end(), std::rand);
}

distBubbletonic(8, ts_Data);

auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
for (auto& v : ts_Data) {
EXPECT_EQ((max <= v[0]), true);
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
max = v.back();
}
}
#endif

+ 205
- 0
homework_2/test/tests_MPI.cpp Zobrazit soubor

@@ -0,0 +1,205 @@
/**
* \file
* \brief PDS HW2 tests
*
* \author
* Christos Choutouridis AEM:8997
* <cchoutou@ece.auth.gr>
*/

#include <gtest/gtest.h>
#include <mpi.h>
#include <random>
#include "distsort.hpp"

MPI_t<> ts_mpi;

// Mersenne seeded from hw if possible. range: [type_min, type_max]
std::random_device rd;
std::mt19937 gen(rd());

class TMPIdistSort : public ::testing::Test {
protected:
static void SetUpTestSuite() {
int argc = 0;
char** argv = nullptr;
MPI_Init(&argc, &argv);

int rank, size;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);
ts_mpi.rank_ = rank;
ts_mpi.size_ = size;
}

static void TearDownTestSuite() {
MPI_Finalize();
}
};


/*
* To run thiese test execute:
* mpirun -np <N> ./bit/tests
*/
TEST_F(TMPIdistSort, distBubbletonic_test1) {
// Create and fill vector
using tsValue_t = uint8_t; // Test parameters
size_t ts_buffer_size = 16;

ShadowedVec_t<tsValue_t> ts_Data;
std::uniform_int_distribution<tsValue_t > dis(
std::numeric_limits<tsValue_t>::min(),
std::numeric_limits<tsValue_t>::max()
);
ts_Data.resize(ts_buffer_size);
std::generate(ts_Data.begin(), ts_Data.end(), [&]() { return dis(gen); });

// Execute function under test in all processes
distBubbletonic(ts_Data, ts_mpi.size(), ts_mpi.rank());

// Local min and max
auto local_min = *std::min_element(ts_Data.begin(), ts_Data.end());
auto local_max = *std::max_element(ts_Data.begin(), ts_Data.end());

// Gather min/max to rank 0
std::vector<tsValue_t> global_mins(ts_mpi.size());
std::vector<tsValue_t> global_maxes(ts_mpi.size());
MPI_Datatype datatype = MPI_TypeMapper<tsValue_t>::getType();

MPI_Gather(&local_min, 1, datatype, global_mins.data(), 1, datatype, 0, MPI_COMM_WORLD);
MPI_Gather(&local_max, 1, datatype, global_maxes.data(), 1, datatype, 0, MPI_COMM_WORLD);

// Check results
EXPECT_EQ(std::is_sorted(ts_Data.begin(), ts_Data.end()), true);
if (ts_mpi.rank() == 0) {
for (size_t i = 1; i < global_mins.size(); ++i) {
EXPECT_LE(global_maxes[i - 1], global_mins[i]);
}
}
}

/*
* To run thiese test execute:
* mpirun -np <N> ./bit/tests
*/
TEST_F(TMPIdistSort, distBubbletonic_test2) {
// Create and fill vector
using tsValue_t = uint32_t; // Test parameters
size_t ts_buffer_size = 1 << 16;

ShadowedVec_t<tsValue_t> ts_Data;
std::uniform_int_distribution<tsValue_t > dis(
std::numeric_limits<tsValue_t>::min(),
std::numeric_limits<tsValue_t>::max()
);
ts_Data.resize(ts_buffer_size);
std::generate(ts_Data.begin(), ts_Data.end(), [&]() { return dis(gen); });

// Execute function under test in all processes
distBubbletonic(ts_Data, ts_mpi.size(), ts_mpi.rank());

// Local min and max
auto local_min = *std::min_element(ts_Data.begin(), ts_Data.end());
auto local_max = *std::max_element(ts_Data.begin(), ts_Data.end());

// Gather min/max to rank 0
std::vector<tsValue_t> global_mins(ts_mpi.size());
std::vector<tsValue_t> global_maxes(ts_mpi.size());
MPI_Datatype datatype = MPI_TypeMapper<tsValue_t>::getType();

MPI_Gather(&local_min, 1, datatype, global_mins.data(), 1, datatype, 0, MPI_COMM_WORLD);
MPI_Gather(&local_max, 1, datatype, global_maxes.data(), 1, datatype, 0, MPI_COMM_WORLD);

// Check results
EXPECT_EQ(std::is_sorted(ts_Data.begin(), ts_Data.end()), true);
if (ts_mpi.rank() == 0) {
for (size_t i = 1; i < global_mins.size(); ++i) {
EXPECT_LE(global_maxes[i - 1], global_mins[i]);
}
}
}


/*
* To run thiese test execute:
* mpirun -np <N> ./bit/tests
*/
TEST_F(TMPIdistSort, distBitonic_test1) {
// Create and fill vector
using tsValue_t = uint8_t; // Test parameters
size_t ts_buffer_size = 16;

ShadowedVec_t<tsValue_t> ts_Data;
std::uniform_int_distribution<tsValue_t > dis(
std::numeric_limits<tsValue_t>::min(),
std::numeric_limits<tsValue_t>::max()
);
ts_Data.resize(ts_buffer_size);
std::generate(ts_Data.begin(), ts_Data.end(), [&]() { return dis(gen); });

// Execute function under test in all processes
distBitonic(ts_Data, ts_mpi.size(), ts_mpi.rank());

// Local min and max
auto local_min = *std::min_element(ts_Data.begin(), ts_Data.end());
auto local_max = *std::max_element(ts_Data.begin(), ts_Data.end());

// Gather min/max to rank 0
std::vector<tsValue_t> global_mins(ts_mpi.size());
std::vector<tsValue_t> global_maxes(ts_mpi.size());
MPI_Datatype datatype = MPI_TypeMapper<tsValue_t>::getType();

MPI_Gather(&local_min, 1, datatype, global_mins.data(), 1, datatype, 0, MPI_COMM_WORLD);
MPI_Gather(&local_max, 1, datatype, global_maxes.data(), 1, datatype, 0, MPI_COMM_WORLD);

// Check results
EXPECT_EQ(std::is_sorted(ts_Data.begin(), ts_Data.end()), true);
if (ts_mpi.rank() == 0) {
for (size_t i = 1; i < global_mins.size(); ++i) {
EXPECT_LE(global_maxes[i - 1], global_mins[i]);
}
}
}

/*
* To run thiese test execute:
* mpirun -np <N> ./bit/tests
*/
TEST_F(TMPIdistSort, distBitonic_test2) {
// Create and fill vector
using tsValue_t = uint32_t; // Test parameters
size_t ts_buffer_size = 1 << 16;

ShadowedVec_t<tsValue_t> ts_Data;
std::uniform_int_distribution<tsValue_t > dis(
std::numeric_limits<tsValue_t>::min(),
std::numeric_limits<tsValue_t>::max()
);
ts_Data.resize(ts_buffer_size);
std::generate(ts_Data.begin(), ts_Data.end(), [&]() { return dis(gen); });

// Execute function under test in all processes
distBitonic(ts_Data, ts_mpi.size(), ts_mpi.rank());

// Local min and max
auto local_min = *std::min_element(ts_Data.begin(), ts_Data.end());
auto local_max = *std::max_element(ts_Data.begin(), ts_Data.end());

// Gather min/max to rank 0
std::vector<tsValue_t> global_mins(ts_mpi.size());
std::vector<tsValue_t> global_maxes(ts_mpi.size());
MPI_Datatype datatype = MPI_TypeMapper<tsValue_t>::getType();

MPI_Gather(&local_min, 1, datatype, global_mins.data(), 1, datatype, 0, MPI_COMM_WORLD);
MPI_Gather(&local_max, 1, datatype, global_maxes.data(), 1, datatype, 0, MPI_COMM_WORLD);

// Check results
EXPECT_EQ(std::is_sorted(ts_Data.begin(), ts_Data.end()), true);
if (ts_mpi.rank() == 0) {
for (size_t i = 1; i < global_mins.size(); ++i) {
EXPECT_LE(global_maxes[i - 1], global_mins[i]);
}
}
}


Načítá se…
Zrušit
Uložit