HW2: (WIP) Checkpoint with code re-arrangement and elbowSort
This commit is contained in:
parent
1d6b271d2a
commit
4d1d7502aa
@ -10,8 +10,7 @@
|
||||
#ifndef CONFIG_H_
|
||||
#define CONFIG_H_
|
||||
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
#include <cstdint>
|
||||
|
||||
/*
|
||||
* Defines for different version of the exercise
|
||||
@ -25,11 +24,15 @@
|
||||
#define CODE_VERSION BITONIC
|
||||
#endif
|
||||
|
||||
// Value type selection
|
||||
using distValue_t = uint8_t;
|
||||
|
||||
/*!
|
||||
* Session option for each invocation of the executable
|
||||
*/
|
||||
struct session_t {
|
||||
size_t arraySize{0};
|
||||
bool ndebug{false};
|
||||
bool timing{false};
|
||||
bool verbose{false}; //!< Flag to enable verbose output to stdout
|
||||
};
|
||||
|
@ -1,73 +0,0 @@
|
||||
/*!
|
||||
* \file
|
||||
* \brief Distributed bitonic implementation header
|
||||
*
|
||||
* \author
|
||||
* Christos Choutouridis AEM:8997
|
||||
* <cchoutou@ece.auth.gr>
|
||||
*/
|
||||
|
||||
#ifndef DISTBITONIC_H_
|
||||
#define DISTBITONIC_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include "utils.hpp"
|
||||
|
||||
|
||||
/*!
|
||||
* Enumerator for the different versions of the sorting method
|
||||
*/
|
||||
enum class SortMode {
|
||||
Bubbletonic, //!< The v0.5 of the algorithm where we use a bubble-sort like approach
|
||||
Bitonic //!< The v1.0 of the algorithm where we use the bitonic data-exchange approach
|
||||
};
|
||||
|
||||
using Data_t = std::vector<uint8_t>;
|
||||
using AllData_t = std::vector<Data_t>;
|
||||
|
||||
/*
|
||||
* ============================== Sort utilities ==============================
|
||||
*/
|
||||
|
||||
/*!
|
||||
* The primary function template of ascending(). It is DISABLED since , it is explicitly specialized
|
||||
* for each of the \c SortMode
|
||||
*/
|
||||
template <SortMode Mode> bool ascending(mpi_id_t, [[maybe_unused]] size_t) noexcept = delete;
|
||||
template <> bool ascending<SortMode::Bubbletonic>(mpi_id_t node, [[maybe_unused]] size_t depth) noexcept;
|
||||
template <> bool ascending<SortMode::Bitonic>(mpi_id_t node, size_t depth) noexcept;
|
||||
|
||||
/*!
|
||||
* The primary function template of partner(). It is DISABLED since , it is explicitly specialized
|
||||
* for each of the \c SortMode
|
||||
*/
|
||||
template <SortMode Mode> mpi_id_t partner(mpi_id_t, size_t) noexcept = delete;
|
||||
template <> mpi_id_t partner<SortMode::Bubbletonic>(mpi_id_t node, size_t step) noexcept;
|
||||
template <> mpi_id_t partner<SortMode::Bitonic>(mpi_id_t node, size_t step) noexcept;
|
||||
|
||||
/*!
|
||||
* The primary function template of keepSmall(). It is DISABLED since , it is explicitly specialized
|
||||
* for each of the \c SortMode
|
||||
*/
|
||||
template<SortMode Mode> bool keepSmall(mpi_id_t, mpi_id_t, [[maybe_unused]] size_t) noexcept = delete;
|
||||
template<> bool keepSmall<SortMode::Bubbletonic>(mpi_id_t node, mpi_id_t partner, [[maybe_unused]] size_t depth) noexcept;
|
||||
template<> bool keepSmall<SortMode::Bitonic>(mpi_id_t node, mpi_id_t partner, size_t depth) noexcept;
|
||||
|
||||
bool isActive(mpi_id_t node, mpi_id_t nodes) noexcept;
|
||||
|
||||
/*
|
||||
* ============================== Data utilities ==============================
|
||||
*/
|
||||
void exchange(mpi_id_t node, mpi_id_t partner);
|
||||
void minmax(AllData_t& data, mpi_id_t node, mpi_id_t partner, bool keepsmall);
|
||||
|
||||
/*
|
||||
* ============================== Sort algorithms ==============================
|
||||
*/
|
||||
void bubbletonic_network(AllData_t& data, mpi_id_t nodes);
|
||||
void distBubbletonic(mpi_id_t P, AllData_t& data);
|
||||
|
||||
void bitonic_network(AllData_t& data, mpi_id_t nodes, mpi_id_t depth);
|
||||
void distBitonic(mpi_id_t P, AllData_t& data);
|
||||
|
||||
#endif //DISTBITONIC_H_
|
288
homework_2/include/distsort.hpp
Normal file
288
homework_2/include/distsort.hpp
Normal file
@ -0,0 +1,288 @@
|
||||
/*!
|
||||
* \file
|
||||
* \brief Distributed sort implementation header
|
||||
*
|
||||
* \author
|
||||
* Christos Choutouridis AEM:8997
|
||||
* <cchoutou@ece.auth.gr>
|
||||
*/
|
||||
|
||||
#ifndef DISTBITONIC_H_
|
||||
#define DISTBITONIC_H_
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#if !defined DEBUG
|
||||
#define NDEBUG
|
||||
#endif
|
||||
#include <cassert>
|
||||
|
||||
#include "utils.hpp"
|
||||
#include "config.h"
|
||||
|
||||
|
||||
/*!
|
||||
* Enumerator for the different versions of the sorting method
|
||||
*/
|
||||
enum class SortMode {
|
||||
Bubbletonic, //!< The v0.5 of the algorithm where we use a bubble-sort like approach
|
||||
Bitonic //!< The v1.0 of the algorithm where we use the bitonic data-exchange approach
|
||||
};
|
||||
|
||||
/*
|
||||
* ============================== Sort utilities ==============================
|
||||
*/
|
||||
|
||||
/*!
|
||||
* The primary function template of ascending(). It is DISABLED since , it is explicitly specialized
|
||||
* for each of the \c SortMode
|
||||
*/
|
||||
template <SortMode Mode> inline bool ascending(mpi_id_t, [[maybe_unused]] size_t) noexcept = delete;
|
||||
|
||||
/*!
|
||||
* Returns the ascending or descending configuration of the node's sequence based on
|
||||
* the current node (MPI process) and the depth of the sorting network
|
||||
*
|
||||
* @param node The current node (MPI process)
|
||||
* @return True if we need ascending configuration, false otherwise
|
||||
*/
|
||||
template <> inline
|
||||
bool ascending<SortMode::Bubbletonic>(mpi_id_t node, [[maybe_unused]] size_t depth) noexcept {
|
||||
return (node % 2) == 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the ascending or descending configuration of the node's sequence based on
|
||||
* the current node (MPI process) and the depth of the sorting network
|
||||
*
|
||||
* @param node The current node (MPI process)
|
||||
* @param depth The total depth of the sorting network (same for each step for a given network)
|
||||
*
|
||||
* @return True if we need ascending configuration, false otherwise
|
||||
*/
|
||||
template <> inline
|
||||
bool ascending<SortMode::Bitonic>(mpi_id_t node, size_t depth) noexcept {
|
||||
return !(node & (1 << depth));
|
||||
}
|
||||
|
||||
/*!
|
||||
* The primary function template of partner(). It is DISABLED since , it is explicitly specialized
|
||||
* for each of the \c SortMode
|
||||
*/
|
||||
template <SortMode Mode> inline mpi_id_t partner(mpi_id_t, size_t) noexcept = delete;
|
||||
|
||||
/*!
|
||||
* Returns the node's partner for data exchange during the sorting network iterations
|
||||
* of Bubbletonic
|
||||
*
|
||||
* @param node The current node
|
||||
* @param step The step of the sorting network
|
||||
* @return The node id of the partner for data exchange
|
||||
*/
|
||||
template <> inline
|
||||
mpi_id_t partner<SortMode::Bubbletonic>(mpi_id_t node, size_t step) noexcept {
|
||||
//return (node % 2 == step % 2) ? node + 1 : node - 1;
|
||||
return (((node+step) % 2) == 0) ? node + 1 : node - 1;
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the node's partner for data exchange during the sorting network iterations
|
||||
* of Bitonic
|
||||
*
|
||||
* @param node The current node
|
||||
* @param step The step of the sorting network
|
||||
* @return The node id of the partner for data exchange
|
||||
*/
|
||||
template <> inline
|
||||
mpi_id_t partner<SortMode::Bitonic>(mpi_id_t node, size_t step) noexcept {
|
||||
return (node ^ (1 << step));
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* The primary function template of keepSmall(). It is DISABLED since , it is explicitly specialized
|
||||
* for each of the \c SortMode
|
||||
*/
|
||||
template<SortMode Mode> inline bool keepSmall(mpi_id_t, mpi_id_t, [[maybe_unused]] size_t) noexcept = delete;
|
||||
|
||||
/*!
|
||||
* Predicate to check if a node keeps the small numbers during the bubbletonic sort network exchange.
|
||||
*
|
||||
* @param node The node for which we check
|
||||
* @param partner The partner of the data exchange
|
||||
* @return True if the node should keep the small values, false otherwise
|
||||
*/
|
||||
template <> inline
|
||||
bool keepSmall<SortMode::Bubbletonic>(mpi_id_t node, mpi_id_t partner, [[maybe_unused]] size_t depth) noexcept {
|
||||
assert(node != partner);
|
||||
return (node < partner);
|
||||
}
|
||||
|
||||
/*!
|
||||
* Predicate to check if a node keeps the small numbers during the bitonic sort network exchange.
|
||||
*
|
||||
* @param node The node for which we check
|
||||
* @param partner The partner of the data exchange
|
||||
* @param depth The total depth of the sorting network (same for each step for a given network)
|
||||
* @return True if the node should keep the small values, false otherwise
|
||||
*/
|
||||
template <> inline
|
||||
bool keepSmall<SortMode::Bitonic>(mpi_id_t node, mpi_id_t partner, size_t depth) noexcept {
|
||||
assert(node != partner);
|
||||
return ascending<SortMode::Bitonic>(node, depth) == (node < partner);
|
||||
}
|
||||
|
||||
/*!
|
||||
* Predicate to check if the node is active in the current iteration of the bubbletonic
|
||||
* sort exchange.
|
||||
*
|
||||
* @param node The node to check
|
||||
* @param nodes The total number of nodes
|
||||
* @return True if the node is active, false otherwise
|
||||
*/
|
||||
bool isActive(mpi_id_t node, size_t nodes) noexcept;
|
||||
|
||||
/*
|
||||
* ============================== Data utilities ==============================
|
||||
*/
|
||||
|
||||
/*!
|
||||
*
|
||||
* @tparam RangeT
|
||||
* @param data
|
||||
* @param ascending
|
||||
*/
|
||||
template<typename RangeT>
|
||||
void fullSort(RangeT& data, bool ascending) {
|
||||
// Use introsort from stdlib++ here, unless ...
|
||||
if (ascending)
|
||||
std::sort(data.begin(), data.end(), std::less<>());
|
||||
else
|
||||
std::sort(data.begin(), data.end(), std::greater<>());
|
||||
}
|
||||
|
||||
/*!
|
||||
*
|
||||
* @tparam ShadowedT
|
||||
* @tparam CompT
|
||||
* @param data
|
||||
* @param comp
|
||||
*/
|
||||
template<typename ShadowedT, typename CompT>
|
||||
void elbowSortCore(ShadowedT& data, CompT comp) {
|
||||
size_t N = data.size();
|
||||
auto active = data.getActive();
|
||||
auto shadow = data.getShadow();
|
||||
size_t left = std::distance(
|
||||
active.begin(),
|
||||
std::min_element(active.begin(), active.end())
|
||||
);
|
||||
size_t right = (left == N-1) ? 0 : left + 1;
|
||||
|
||||
for (size_t i = 0 ; i<N ; ++i) {
|
||||
if (comp(active[left], active[right])) {
|
||||
shadow[i] = active[left];
|
||||
left = (left == 0) ? N-1 : left -1;
|
||||
}
|
||||
else {
|
||||
shadow[i] = active[right];
|
||||
right = (right + 1) % N;
|
||||
}
|
||||
}
|
||||
data.switch_active();
|
||||
}
|
||||
|
||||
/*!
|
||||
*
|
||||
* @tparam ShadowedT
|
||||
* @param data
|
||||
* @param ascending
|
||||
*/
|
||||
template<typename ShadowedT>
|
||||
void elbowSort(ShadowedT& data, bool ascending) {
|
||||
if (ascending)
|
||||
elbowSortCore(data, std::less<>());
|
||||
else
|
||||
elbowSortCore(data, std::greater<>());
|
||||
}
|
||||
|
||||
/*!
|
||||
*
|
||||
* @tparam RangeT
|
||||
* @param local
|
||||
* @param remote
|
||||
* @param keepsmall
|
||||
*/
|
||||
template<typename RangeT>
|
||||
void minmax(RangeT& local, RangeT& remote, bool keepsmall) {
|
||||
using value_t = typename RangeT::value_type;
|
||||
std::transform(
|
||||
local.begin(), local.end(),
|
||||
remote.begin(),
|
||||
local.begin(),
|
||||
[keepsmall](const value_t& a, const value_t& b){
|
||||
return (keepsmall) ? std::min(a, b) : std::max(a, b);
|
||||
});
|
||||
}
|
||||
|
||||
/*
|
||||
* ============================== Sort algorithms ==============================
|
||||
*/
|
||||
|
||||
/*!
|
||||
*
|
||||
* @tparam ShadowedT
|
||||
* @param data
|
||||
* @param Processes
|
||||
*/
|
||||
template<typename ShadowedT>
|
||||
void distBubbletonic(ShadowedT& data, mpi_id_t Processes) {
|
||||
// Initially sort to create a half part of a bitonic sequence
|
||||
fullSort(data, ascending<SortMode::Bubbletonic>(mpi.rank(), 0));
|
||||
|
||||
// Sort network
|
||||
for (size_t step = 0; step < Processes-1; ++step) {
|
||||
auto part = partner<SortMode::Bubbletonic>(mpi.rank(), step);
|
||||
auto ks = keepSmall<SortMode::Bubbletonic>(mpi.rank(), part, Processes);
|
||||
if (isActive(mpi.rank(), Processes)) {
|
||||
mpi.exchange(part, data.getActive(), data.getShadow(), step);
|
||||
minmax(data.getActive(), data.getShadow(), ks);
|
||||
elbowSort(data, ascending<SortMode::Bubbletonic>(mpi.rank(), Processes));
|
||||
}
|
||||
}
|
||||
|
||||
if (!ascending<SortMode::Bubbletonic>(mpi.rank(), 0))
|
||||
elbowSort(data, true);
|
||||
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
*
|
||||
* @tparam ShadowedT
|
||||
* @param data
|
||||
* @param Processes
|
||||
*/
|
||||
template<typename ShadowedT>
|
||||
void distBitonic(ShadowedT& data, mpi_id_t Processes) {
|
||||
auto p = static_cast<uint32_t>(std::log2(Processes));
|
||||
|
||||
// Initially sort to create a half part of a bitonic sequence
|
||||
fullSort(data, ascending<SortMode::Bitonic>(mpi.rank(), 0));
|
||||
|
||||
// Run through sort network using elbow-sort
|
||||
for (size_t depth = 1; depth <= p; ++depth) {
|
||||
for (size_t step = depth; step > 0;) {
|
||||
--step;
|
||||
auto part = partner<SortMode::Bitonic>(mpi.rank(), step);
|
||||
auto ks = keepSmall<SortMode::Bitonic>(mpi.rank(), part, depth);
|
||||
mpi.exchange(part, data.getActive(), data.getShadow(), (depth << 8) | step);
|
||||
minmax(data.getActive(), data.getShadow(), ks);
|
||||
}
|
||||
elbowSort (data, ascending<SortMode::Bitonic>(mpi.rank(), depth));
|
||||
}
|
||||
}
|
||||
|
||||
#endif //DISTBITONIC_H_
|
@ -1,14 +0,0 @@
|
||||
/*!
|
||||
* \file
|
||||
* \brief The distributed bitonic implementation header
|
||||
*
|
||||
* \author
|
||||
* Christos Choutouridis AEM:8997
|
||||
* <cchoutou@ece.auth.gr>
|
||||
*/
|
||||
|
||||
#ifndef IMPL_H_
|
||||
#define IMPL_H_
|
||||
|
||||
|
||||
#endif //IMPL_H_
|
@ -1,804 +0,0 @@
|
||||
/**
|
||||
* \file matrix.hpp
|
||||
* \brief A matrix abstraction implementation
|
||||
*
|
||||
* \author
|
||||
* Christos Choutouridis AEM:8997
|
||||
* <cchoutou@ece.auth.gr>
|
||||
*/
|
||||
#ifndef MATRIX_HPP_
|
||||
#define MATRIX_HPP_
|
||||
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <tuple>
|
||||
|
||||
namespace mtx {
|
||||
|
||||
using std::size_t;
|
||||
|
||||
/*
|
||||
* Small helper to strip types
|
||||
*/
|
||||
template<typename T>
|
||||
struct remove_cvref {
|
||||
typedef std::remove_cv_t<std::remove_reference_t<T>> type;
|
||||
};
|
||||
template<typename T>
|
||||
using remove_cvref_t = typename remove_cvref<T>::type;
|
||||
|
||||
/*!
|
||||
* Enumerator to denote the storage type of the array to use.
|
||||
*/
|
||||
enum class MatrixType {
|
||||
DENSE, /*!< Matrix is dense */
|
||||
SPARSE, /*!< Matrix is sparse */
|
||||
};
|
||||
|
||||
/*!
|
||||
* Enumerator to denote the storage type of the array to use.
|
||||
*/
|
||||
enum class MatrixOrder {
|
||||
COLMAJOR, /*!< Matrix is column major */
|
||||
ROWMAJOR, /*!< Matrix is row major */
|
||||
};
|
||||
|
||||
/*
|
||||
* Forward type declarations
|
||||
*/
|
||||
|
||||
template<typename MatrixType> struct MatCol;
|
||||
template<typename MatrixType> struct MatRow;
|
||||
template<typename MatrixType> struct MatVal;
|
||||
|
||||
/*!
|
||||
* A 2-D matrix functionality over a 1-D array
|
||||
*
|
||||
* This is a very thin abstraction layer over a native array.
|
||||
* This is tested using compiler explorer and our template produce
|
||||
* almost identical assembly.
|
||||
*
|
||||
* The penalty hit we have is due to the fact that we use a one dimension array
|
||||
* and we have to calculate the actual position from an (i,j) pair.
|
||||
* The use of 1D array was our intention from the beginning, so the penalty
|
||||
* was pretty much unavoidable.
|
||||
*
|
||||
* \tparam DataType The underling data type of the array
|
||||
* \tparam IndexType The underling type for the index variables and sizes
|
||||
* \tparam Type The storage type of the array
|
||||
* \arg FULL For full matrix
|
||||
* \arg SYMMETRIC For symmetric matrix (we use only the lower part)
|
||||
*/
|
||||
template<typename DataType,
|
||||
typename IndexType = size_t,
|
||||
MatrixType Type = MatrixType::DENSE,
|
||||
MatrixOrder Order = MatrixOrder::ROWMAJOR,
|
||||
bool Symmetric = false>
|
||||
struct Matrix {
|
||||
|
||||
using dataType = DataType; //!< meta:export of underling data type
|
||||
using indexType = IndexType; //!< meta:export of underling index type
|
||||
static constexpr MatrixOrder matrixOrder = Order; //!< meta:export of array order
|
||||
static constexpr MatrixType matrixType = Type; //!< meta:export of array type
|
||||
static constexpr bool symmetric = Symmetric; //!< meta:export symmetric flag
|
||||
|
||||
/*!
|
||||
* \name Obj lifetime
|
||||
*/
|
||||
//! @{
|
||||
|
||||
//! Construct an empty matrix with dimensions rows x columns
|
||||
Matrix(IndexType rows = IndexType{}, IndexType columns = IndexType{}) noexcept
|
||||
: vector_storage_(capacity(rows, columns)),
|
||||
raw_storage_(nullptr),
|
||||
use_vector_(true),
|
||||
rows_(rows),
|
||||
cols_(columns) {
|
||||
data_ = vector_storage_.data();
|
||||
}
|
||||
|
||||
//! Construct a matrix by copying existing data with dimensions rows x columns
|
||||
Matrix(DataType* data, IndexType major_start, IndexType major_length, IndexType minor_length) noexcept
|
||||
: vector_storage_(),
|
||||
raw_storage_ (data + major_start * minor_length),
|
||||
use_vector_ (false) {
|
||||
if constexpr (Order == MatrixOrder::ROWMAJOR) {
|
||||
rows_ = major_length;
|
||||
cols_ = minor_length;
|
||||
}
|
||||
else {
|
||||
rows_ = minor_length;
|
||||
cols_ = major_length;
|
||||
}
|
||||
data_ = raw_storage_;
|
||||
}
|
||||
|
||||
//! Construct a matrix using an initializer list
|
||||
Matrix(IndexType rows, IndexType columns, std::initializer_list<DataType> list)
|
||||
: vector_storage_(list),
|
||||
raw_storage_(nullptr),
|
||||
use_vector_(true),
|
||||
rows_(rows),
|
||||
cols_(columns) {
|
||||
if (list.size() != capacity(rows, columns)) {
|
||||
throw std::invalid_argument("Matrix initializer list size does not match matrix dimensions.");
|
||||
}
|
||||
data_ = vector_storage_.data();
|
||||
}
|
||||
|
||||
//! move ctor
|
||||
Matrix(Matrix&& m) noexcept { moves(std::move(m)); }
|
||||
//! move
|
||||
Matrix& operator=(Matrix&& m) noexcept { moves(std::move(m)); return *this; }
|
||||
Matrix(const Matrix& m) = delete; //!< No copy ctor
|
||||
Matrix& operator=(const Matrix& m) = delete; //!< No copy
|
||||
//Matrix(const Matrix& m);
|
||||
//Matrix& operator=(const Matrix& m) { copy(m); }
|
||||
|
||||
//! @}
|
||||
|
||||
//! \name Data exposure
|
||||
//! @{
|
||||
|
||||
|
||||
//! Get/Set the size of each dimension
|
||||
IndexType rows() const noexcept { return rows_; }
|
||||
IndexType columns() const noexcept { return cols_; }
|
||||
|
||||
//! Get the interface size of the Matrix (what appears to be the size)
|
||||
IndexType size() const {
|
||||
return rows_ * cols_;
|
||||
}
|
||||
//! Set the interface size of the Matrix (what appears to be the size)
|
||||
IndexType resize(IndexType rows, IndexType columns) {
|
||||
if (use_vector_) {
|
||||
rows_ = rows;
|
||||
cols_ = columns;
|
||||
vector_storage_.resize(capacity(rows_, cols_));
|
||||
data_ = vector_storage_.data();
|
||||
}
|
||||
return capacity(rows_, cols_);
|
||||
}
|
||||
|
||||
//! Actual memory capacity of the symmetric matrix
|
||||
static constexpr IndexType capacity(IndexType M, IndexType N) {
|
||||
if constexpr (Symmetric)
|
||||
return (M+1)*N/2;
|
||||
else
|
||||
return M*N;
|
||||
}
|
||||
|
||||
/*
|
||||
* virtual 2D accessors
|
||||
*/
|
||||
DataType get (IndexType i, IndexType j) {
|
||||
if constexpr (Symmetric) {
|
||||
auto T = [](size_t i)->size_t { return i*(i+1)/2; }; // Triangular number of i
|
||||
if constexpr (Order == MatrixOrder::COLMAJOR) {
|
||||
// In column major we use the lower triangle of the matrix
|
||||
if (i>=j) return data_[j*rows_ - T(j) + i]; // Lower, use our notation
|
||||
else return data_[i*rows_ - T(i) + j]; // Upper, use opposite index
|
||||
}
|
||||
else {
|
||||
// In row major we use the upper triangle of the matrix
|
||||
if (i<=j) return data_[i*cols_ - T(i) + j]; // Upper, use our notation
|
||||
else return data_[j*cols_ - T(j) + i]; // Lower, use opposite index
|
||||
}
|
||||
}
|
||||
else {
|
||||
if constexpr (Order == MatrixOrder::COLMAJOR)
|
||||
return data_[i + j*rows_];
|
||||
else
|
||||
return data_[i*cols_ + j];
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* \fn DataType set(DataType, IndexType, IndexType)
|
||||
* \param v
|
||||
* \param i
|
||||
* \param j
|
||||
* \return
|
||||
*/
|
||||
DataType set (DataType v, IndexType i, IndexType j) {
|
||||
if constexpr (Symmetric) {
|
||||
auto T = [](size_t i)->size_t { return i*(i+1)/2; }; // Triangular number of i
|
||||
if constexpr (Order == MatrixOrder::COLMAJOR) {
|
||||
// In column major we use the lower triangle of the matrix
|
||||
if (i>=j) return data_[j*rows_ - T(j) + i] = v; // Lower, use our notation
|
||||
else return data_[i*rows_ - T(i) + j] = v; // Upper, use opposite index
|
||||
}
|
||||
else {
|
||||
// In row major we use the upper triangle of the matrix
|
||||
if (i<=j) return data_[i*cols_ - T(i) + j] = v; // Upper, use our notation
|
||||
else return data_[j*cols_ - T(j) + i] = v; // Lower, use opposite index
|
||||
}
|
||||
}
|
||||
else {
|
||||
if constexpr (Order == MatrixOrder::COLMAJOR)
|
||||
return data_[i + j*rows_] = v;
|
||||
else
|
||||
return data_[i*cols_ + j] = v;
|
||||
}
|
||||
}
|
||||
// DataType operator()(IndexType i, IndexType j) { return get(i, j); }
|
||||
/*!
|
||||
* Return a proxy MatVal object with read and write capabilities.
|
||||
* @param i The row number
|
||||
* @param j The column number
|
||||
* @return tHE MatVal object
|
||||
*/
|
||||
MatVal<Matrix> operator()(IndexType i, IndexType j) noexcept {
|
||||
return MatVal<Matrix>(this, get(i, j), i, j);
|
||||
}
|
||||
|
||||
// a basic serial iterator support
|
||||
DataType* data() noexcept { return data_; }
|
||||
DataType* begin() noexcept { return data_; }
|
||||
const DataType* begin() const noexcept { return data_; }
|
||||
DataType* end() noexcept { return data_ + capacity(rows_, cols_); }
|
||||
const DataType* end() const noexcept { return data_ + capacity(rows_, cols_); }
|
||||
|
||||
// IndexType begin_idx() noexcept { return 0; }
|
||||
// IndexType end_idx() noexcept { return capacity(rows_, cols_); }
|
||||
|
||||
const DataType* data() const noexcept { return data_; }
|
||||
const IndexType begin_idx() const noexcept { return 0; }
|
||||
const IndexType end_idx() const noexcept { return capacity(rows_, cols_); }
|
||||
//! @}
|
||||
|
||||
/*!
|
||||
* \name Safe iteration API
|
||||
*
|
||||
* This api automates the iteration over the array based on
|
||||
* MatrixType
|
||||
*/
|
||||
//! @{
|
||||
template<typename F, typename... Args>
|
||||
void for_each_in (IndexType begin, IndexType end, F&& lambda, Args&&... args) {
|
||||
for (IndexType it=begin ; it<end ; ++it) {
|
||||
std::forward<F>(lambda)(std::forward<Args>(args)..., it);
|
||||
}
|
||||
}
|
||||
//! @}
|
||||
|
||||
//
|
||||
void swap(Matrix& src) noexcept {
|
||||
std::swap(vector_storage_, src.vector_storage_);
|
||||
std::swap(raw_storage_, src.raw_storage_);
|
||||
std::swap(data_, src.data_);
|
||||
std::swap(use_vector_, src.use_vector_);
|
||||
std::swap(rows_, src.rows_);
|
||||
std::swap(cols_, src.cols_);
|
||||
}
|
||||
|
||||
private:
|
||||
//! move helper
|
||||
void moves(Matrix&& src) noexcept {
|
||||
vector_storage_ = std::move(src.vector_storage_);
|
||||
raw_storage_ = std::move(src.raw_storage_);
|
||||
data_ = std::move(src.data_);
|
||||
use_vector_ = std::move(src.use_vector_);
|
||||
rows_ = std::move(src.rows_);
|
||||
cols_ = std::move(src.cols_);
|
||||
}
|
||||
|
||||
// Storage
|
||||
std::vector<DataType>
|
||||
vector_storage_; //!< Internal storage (if used).
|
||||
DataType* raw_storage_; //!< External storage (if used).
|
||||
DataType* data_; //!< Pointer to active storage.
|
||||
bool use_vector_; //!< True if using vector storage, false for raw pointer.
|
||||
IndexType rows_{}; //!< the virtual size of rows.
|
||||
IndexType cols_{}; //!< the virtual size of columns.
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* A simple sparse matrix specialization.
|
||||
*
|
||||
* We use CSC format and provide get/set functionalities for each (i,j) item
|
||||
* on the matrix. We also provide a () overload using a proxy MatVal object.
|
||||
* This way the user can:
|
||||
* \code
|
||||
* auto v = A(3,4);
|
||||
* A(3, 4) = 7;
|
||||
* \endcode
|
||||
*
|
||||
* We also provide getCol() and getRow() functions witch return a viewer/iterator to rows and
|
||||
* columns of the matrix. In the case of a symmetric matrix instead of a row we return the
|
||||
* equivalent column. This way we gain speed due to CSC format nature.
|
||||
*
|
||||
* @tparam DataType The type for values
|
||||
* @tparam IndexType The type for indexes
|
||||
* @tparam Type The Matrix type (FULL or SYMMETRIC)
|
||||
*/
|
||||
template<typename DataType, typename IndexType,
|
||||
MatrixOrder Order,
|
||||
bool Symmetric>
|
||||
struct Matrix<DataType, IndexType, MatrixType::SPARSE, Order, Symmetric> {
|
||||
|
||||
using dataType = DataType; //!< meta:export of underling data type
|
||||
using indexType = IndexType; //!< meta:export of underling index type
|
||||
static constexpr MatrixOrder matrixOrder = Order; //!< meta:export of array order
|
||||
static constexpr MatrixType matrixType = MatrixType::SPARSE; //!< meta:export of array type
|
||||
static constexpr bool symmetric = Symmetric; //!< meta:export symmetric flag
|
||||
|
||||
friend struct MatCol<Matrix>;
|
||||
friend struct MatRow<Matrix>;
|
||||
friend struct MatVal<Matrix>;
|
||||
|
||||
/*!
|
||||
* \name Obj lifetime
|
||||
*/
|
||||
//! @{
|
||||
|
||||
//! Default ctor with optional memory allocations
|
||||
Matrix(IndexType n=IndexType{}) noexcept:
|
||||
values{},
|
||||
rows{},
|
||||
col_ptr((n)? n+1:2, IndexType{}),
|
||||
N(n),
|
||||
NNZ(0) { }
|
||||
|
||||
//! A ctor using csc array data
|
||||
Matrix(IndexType n, IndexType nnz, const IndexType* row, const IndexType* col) noexcept:
|
||||
values(nnz, 1),
|
||||
rows(row, row+nnz),
|
||||
col_ptr(col, col+n+1),
|
||||
N(n),
|
||||
NNZ(nnz) { }
|
||||
|
||||
//! ctor using csc array data with value array
|
||||
Matrix(IndexType n, IndexType nnz, const DataType* v, const IndexType* row, const IndexType* col) noexcept:
|
||||
values(v, v+nnz),
|
||||
rows(row, row+nnz),
|
||||
col_ptr(col, col+n+1),
|
||||
N(n),
|
||||
NNZ(nnz) { }
|
||||
|
||||
//! ctor vectors of row/col and default value for values array
|
||||
Matrix(IndexType n, IndexType nnz, const DataType v,
|
||||
const std::vector<IndexType>& row, const std::vector<IndexType>& col) noexcept:
|
||||
values(nnz, v),
|
||||
rows (row),
|
||||
col_ptr(col),
|
||||
N(n),
|
||||
NNZ(nnz) { }
|
||||
|
||||
//! move ctor
|
||||
Matrix(Matrix&& m) noexcept { moves(std::move(m)); }
|
||||
//! move
|
||||
Matrix& operator=(Matrix&& m) noexcept { moves(std::move(m)); return *this; }
|
||||
Matrix(const Matrix& m) = delete; //!< make sure there are no copies
|
||||
Matrix& operator=(const Matrix& m) = delete; //!< make sure there are no copies
|
||||
//! @}
|
||||
|
||||
//! \name Data exposure
|
||||
//! @{
|
||||
|
||||
//! \return the dimension of the matrix
|
||||
IndexType size() noexcept { return N; }
|
||||
//! After construction size configuration tool
|
||||
IndexType resize(IndexType n) {
|
||||
col_ptr.resize(n+1);
|
||||
return N = n;
|
||||
}
|
||||
//! \return the NNZ of the matrix
|
||||
IndexType capacity() noexcept { return NNZ; }
|
||||
//! After construction NNZ size configuration tool
|
||||
IndexType capacity(IndexType nnz) noexcept {
|
||||
values.reserve(nnz);
|
||||
rows.reserve(nnz);
|
||||
return NNZ;
|
||||
}
|
||||
// getters for row arrays of the struct (unused)
|
||||
std::vector<DataType>& getValues() noexcept { return values; }
|
||||
std::vector<IndexType>& getRows() noexcept { return rows; }
|
||||
std::vector<IndexType>& getCols() noexcept { return col_ptr; }
|
||||
|
||||
/*!
|
||||
* Return a proxy MatVal object with read and write capabilities.
|
||||
* @param i The row number
|
||||
* @param j The column number
|
||||
* @return tHE MatVal object
|
||||
*/
|
||||
MatVal<Matrix> operator()(IndexType i, IndexType j) noexcept {
|
||||
return MatVal<Matrix>(this, get(i, j), i, j);
|
||||
}
|
||||
|
||||
/*!
|
||||
* A read item functionality using binary search to find the correct row
|
||||
*
|
||||
* @param i The row number
|
||||
* @param j The column number
|
||||
* @return The value of the item or DataType{} if is not present.
|
||||
*/
|
||||
DataType get(IndexType i, IndexType j) noexcept {
|
||||
IndexType idx; bool found;
|
||||
std::tie(idx, found) =find_idx(rows, col_ptr[j], col_ptr[j+1], i);
|
||||
return (found) ? values[idx] : 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* A write item functionality.
|
||||
*
|
||||
* First we search if the matrix has already a value in (i, j) position.
|
||||
* If so we just change it to a new value. If not we add the item on the matrix.
|
||||
*
|
||||
* @note
|
||||
* When change a value, we don't increase the NNZ value of the struct. We expect the user has already
|
||||
* change the NNZ value to the right one using @see capacity() function. When adding a value we
|
||||
* increase the NNZ.
|
||||
*
|
||||
* @param i The row number
|
||||
* @param j The column number
|
||||
* @return The new value of the item .
|
||||
*/
|
||||
DataType set(DataType v, IndexType i, IndexType j) {
|
||||
IndexType idx; bool found;
|
||||
std::tie(idx, found) = find_idx(rows, col_ptr[j], col_ptr[j+1], i);
|
||||
if (found)
|
||||
return values[idx] = v; // we don't change NNZ even if we write "0"
|
||||
else {
|
||||
values.insert(values.begin()+idx, v);
|
||||
rows.insert(rows.begin()+idx, i);
|
||||
std::transform(col_ptr.begin()+j+1, col_ptr.end(), col_ptr.begin()+j+1, [](IndexType it) {
|
||||
return ++it;
|
||||
});
|
||||
++NNZ; // we increase the NNZ even if we write "0"
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* Get a view of a CSC column
|
||||
* @param j The column to get
|
||||
* @return The MatCol object @see MatCol
|
||||
*/
|
||||
MatCol<Matrix> getCol(IndexType j) noexcept {
|
||||
return MatCol<Matrix>(this, col_ptr[j], col_ptr[j+1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* Get a view of a CSC row
|
||||
*
|
||||
* In case of a SYMMETRIC matrix we can return a column instead.
|
||||
*
|
||||
* @param j The row to get
|
||||
* @return On symmetric matrix MatCol otherwise a MatRow
|
||||
*/
|
||||
|
||||
MatCol<Matrix> getRow(IndexType i) noexcept {
|
||||
if constexpr (Symmetric)
|
||||
return getCol(i);
|
||||
else
|
||||
return MatRow<Matrix>(this, i);
|
||||
}
|
||||
|
||||
// values only iterator support
|
||||
DataType* begin() noexcept { return values.begin(); }
|
||||
DataType* end() noexcept { return values.end(); }
|
||||
//! @}
|
||||
|
||||
//! A small iteration helper
|
||||
template<typename F, typename... Args>
|
||||
void for_each_in (IndexType begin, IndexType end, F&& lambda, Args&&... args) {
|
||||
for (IndexType it=begin ; it<end ; ++it) {
|
||||
std::forward<F>(lambda)(std::forward<Args>(args)..., it);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
/*!
|
||||
* A small binary search implementation using index for begin-end instead of iterators.
|
||||
*
|
||||
* \param v Reference to vector to search
|
||||
* \param begin The vector's index to begin
|
||||
* \param end The vector's index to end
|
||||
* \param match What to search
|
||||
* \return An <index, status> pair.
|
||||
* index is the index of the item or end if not found
|
||||
* status is true if found, false otherwise
|
||||
*/
|
||||
std::pair<IndexType, bool> find_idx(const std::vector<IndexType>& v, IndexType begin, IndexType end, IndexType match) {
|
||||
if (v.capacity() != 0 && begin < end) {
|
||||
IndexType b = begin, e = end-1;
|
||||
while (b <= e) {
|
||||
IndexType m = (b+e)/2;
|
||||
if (v[m] == match) return std::make_pair(m, true);
|
||||
else if (b >= e) return std::make_pair(end, false);
|
||||
else {
|
||||
if (v[m] < match) b = m +1;
|
||||
else e = m -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_pair(end, false);
|
||||
}
|
||||
|
||||
// move helper
|
||||
void moves(Matrix&& src) noexcept {
|
||||
values = std::move(src.values);
|
||||
rows = std::move(src.rows);
|
||||
col_ptr = std::move(src.col_ptr);
|
||||
N = std::move(src.N); // redundant for primitives
|
||||
NNZ = std::move(src.NNZ); //
|
||||
}
|
||||
//! \name Data
|
||||
//! @{
|
||||
std::vector<DataType> values {}; //!< vector to store the values of the matrix
|
||||
std::vector<IndexType> rows{}; //!< vector to store the row information
|
||||
std::vector<IndexType> col_ptr{1,0}; //!< vector to store the column pointers
|
||||
IndexType N{0}; //!< The dimension of the matrix (square)
|
||||
IndexType NNZ{0}; //!< The NNZ (capacity of the matrix)
|
||||
//! @}
|
||||
};
|
||||
|
||||
|
||||
/*!
|
||||
* A view/iterator hybrid object for Matrix columns.
|
||||
*
|
||||
* This object provides access to a column of a Matrix. The public functionalities
|
||||
* allow data access using indexes instead of iterators. We prefer indexes over iterators
|
||||
* because we can apply the same index to different inner vector of Matrix without conversion.
|
||||
*
|
||||
* @tparam DataType
|
||||
* @tparam IndexType
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
struct MatCol {
|
||||
using owner_t = MatrixType;
|
||||
|
||||
using DataType = typename MatrixType::dataType;
|
||||
using IndexType = typename MatrixType::indexType;
|
||||
|
||||
/*!
|
||||
* ctor using column pointers for begin-end. own is pointer to Matrix.
|
||||
*/
|
||||
MatCol(owner_t* own, const IndexType begin, const IndexType end) noexcept :
|
||||
owner_(own), index_(begin), begin_(begin), end_(end) {
|
||||
vindex_ = vIndexCalc(index_);
|
||||
}
|
||||
MatCol() = default;
|
||||
MatCol(const MatCol&) = delete; //!< make sure there are no copies
|
||||
MatCol& operator=(const MatCol&)= delete; //!< make sure there are no copies
|
||||
MatCol(MatCol&&) = default;
|
||||
MatCol& operator=(MatCol&&) = default;
|
||||
|
||||
//! a simple dereference operator, like an iterator
|
||||
DataType operator* () {
|
||||
return get();
|
||||
}
|
||||
//! Increment operator acts on index(), like an iterator
|
||||
MatCol& operator++ () { advance(); return *this; }
|
||||
MatCol& operator++ (int) { MatCol& p = *this; advance(); return p; }
|
||||
|
||||
//! () operator acts as member access (like a view)
|
||||
DataType operator()(IndexType x) {
|
||||
return (x == index())? get() : DataType{};
|
||||
}
|
||||
//! = operator acts as member assignment (like a view)
|
||||
DataType operator= (DataType v) { return owner_->values[index_] = v; }
|
||||
// iterator like handlers
|
||||
// these return a virtual index value based on the items position on the full matrix
|
||||
// but the move of the index is just a ++ away.
|
||||
IndexType index() noexcept { return vindex_; }
|
||||
const IndexType index() const noexcept { return vindex_; }
|
||||
IndexType begin() noexcept { return vIndexCalc(begin_); }
|
||||
const IndexType begin() const noexcept { return vIndexCalc(begin_); }
|
||||
IndexType end() noexcept { return owner_->N; }
|
||||
const IndexType end() const noexcept { return owner_->N; }
|
||||
|
||||
/*!
|
||||
* Multiplication operator
|
||||
*
|
||||
* We follow only the non-zero values and multiply only the common indexes.
|
||||
*
|
||||
* @tparam C Universal reference for the type right half site column
|
||||
*
|
||||
* @param c The right hand site matrix
|
||||
* @return The value of the inner product of two vectors
|
||||
* @note The time complexity is \$ O(nnz1+nnz2) \$.
|
||||
* Where the nnz is the max NNZ elements of the column of the matrix
|
||||
*/
|
||||
template <typename C>
|
||||
DataType operator* (C&& c) {
|
||||
static_assert(std::is_same<remove_cvref_t<C>, MatCol<MatrixType>>(), "");
|
||||
DataType v{};
|
||||
while (index() != end() && c.index() != c.end()) {
|
||||
if (index() < c.index()) advance(); // advance me
|
||||
else if (index() > c.index()) ++c; // advance other
|
||||
else { //index() == c.index()
|
||||
v += get() * *c; // multiply and advance both
|
||||
++c;
|
||||
advance();
|
||||
}
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
private:
|
||||
//! small tool to increase the index pointers to Matrix
|
||||
void advance() noexcept {
|
||||
++index_;
|
||||
vindex_ = vIndexCalc(index_);
|
||||
}
|
||||
//! tool to translate between col_ptr indexes and Matrix "virtual" full matrix indexes
|
||||
IndexType vIndexCalc(IndexType idx) {
|
||||
return (idx < end_) ? owner_->rows[idx] : end();
|
||||
}
|
||||
//! small get tool
|
||||
DataType get() { return owner_->values[index_]; }
|
||||
|
||||
owner_t* owner_ {nullptr}; //!< Pointer to owner Matrix. MatCol is just a view
|
||||
IndexType vindex_ {IndexType{}}; //!< Virtual index of full matrix
|
||||
IndexType index_ {IndexType{}}; //!< index to Matrix::rows
|
||||
IndexType begin_ {IndexType{}}; //!< beginning index of the column in Matrix::rows
|
||||
IndexType end_ {IndexType{}}; //!< ending index of the column in Matrix::rows
|
||||
};
|
||||
|
||||
/*!
|
||||
* A view/iterator hybrid object for Matrix rows.
|
||||
*
|
||||
* This object provides access to a column of a Matrix. The public functionalities
|
||||
* allow data access using indexes instead of iterators. We prefer indexes over iterators
|
||||
* because we can apply the same index to different inner vector of Matrix without conversion.
|
||||
*
|
||||
* @tparam DataType
|
||||
* @tparam IndexType
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
struct MatRow {
|
||||
using owner_t = MatrixType;
|
||||
|
||||
using DataType = typename MatrixType::dataType;
|
||||
using IndexType = typename MatrixType::indexType;
|
||||
|
||||
/*!
|
||||
* ctor using virtual full matrix row index. own is pointer to Matrix.
|
||||
*/
|
||||
MatRow(owner_t* own, const IndexType row) noexcept :
|
||||
owner_(own), vindex_(IndexType{}), row_(row), index_(IndexType{}),
|
||||
begin_(IndexType{}), end_(owner_->NNZ) {
|
||||
// place begin
|
||||
while(begin_ != end_ && owner_->rows[begin_] != row_)
|
||||
++begin_;
|
||||
// place index_ and vindex_
|
||||
if (owner_->rows[index_] != row_)
|
||||
advance();
|
||||
}
|
||||
MatRow() = default;
|
||||
MatRow(const MatRow&) = delete; //!< make sure there are no copies
|
||||
MatRow& operator=(const MatRow&)= delete; //!< make sure there are no copies
|
||||
MatRow(MatRow&&) = default;
|
||||
MatRow& operator=(MatRow&&) = default;
|
||||
|
||||
//! a simple dereference operator, like an iterator
|
||||
DataType operator* () {
|
||||
return get();
|
||||
}
|
||||
//! Increment operator acts on index(), like an iterator
|
||||
//! here the increment is a O(N) process.
|
||||
MatRow& operator++ () { advance(); return *this; }
|
||||
MatRow& operator++ (int) { MatRow& p = *this; advance(); return p; }
|
||||
|
||||
//! () operator acts as member access (like a view)
|
||||
DataType operator()(IndexType x) {
|
||||
return (x == index())? get() : DataType{};
|
||||
}
|
||||
//! = operator acts as member assignment (like a view)
|
||||
DataType operator= (DataType v) { return owner_->values[index_] = v; }
|
||||
// iterator like handlers
|
||||
// these return a virtual index value based on the items position on the full matrix
|
||||
// but the move of the index is just a ++ away.
|
||||
IndexType index() noexcept { return vindex_; }
|
||||
const IndexType index() const noexcept { return vindex_; }
|
||||
IndexType begin() noexcept { return vIndexCalc(begin_); }
|
||||
const IndexType begin() const noexcept { return vIndexCalc(begin_); }
|
||||
IndexType end() noexcept { return owner_->N; }
|
||||
const IndexType end() const noexcept { return owner_->N; }
|
||||
|
||||
/*!
|
||||
* Multiplication operator
|
||||
*
|
||||
* We follow only the non-zero values and multiply only the common indexes.
|
||||
*
|
||||
* @tparam C Universal reference for the type right half site column
|
||||
*
|
||||
* @param c The right hand site matrix
|
||||
* @return The value of the inner product of two vectors
|
||||
* @note The time complexity is \$ O(N+nnz2) \$ and way heavier the ColxCol multiplication.
|
||||
* Where the nnz is the max NNZ elements of the column of the matrix
|
||||
*/
|
||||
template <typename C>
|
||||
DataType operator* (C&& c) {
|
||||
static_assert(std::is_same<remove_cvref_t<C>, MatCol<MatrixType>>(), "");
|
||||
DataType v{};
|
||||
while (index() != end() && c.index() != c.end()) {
|
||||
if (index() < c.index()) advance(); // advance me
|
||||
else if (index() > c.index()) ++c; // advance other
|
||||
else { //index() == c.index()
|
||||
v += get() * *c; // multiply and advance both
|
||||
++c;
|
||||
advance();
|
||||
}
|
||||
}
|
||||
return v;
|
||||
}
|
||||
private:
|
||||
//! small tool to increase the index pointers to Matrix matrix
|
||||
//! We have to search the entire rows vector in Matrix to find the next
|
||||
//! virtual row position.
|
||||
//! time complexity O(N)
|
||||
void advance() noexcept {
|
||||
do
|
||||
++index_;
|
||||
while(index_ != end_ && owner_->rows[index_] != row_);
|
||||
vindex_ = vIndexCalc(index_);
|
||||
}
|
||||
//! tool to translate between col_ptr indexes and Matrix "virtual" full matrix indexes
|
||||
IndexType vIndexCalc(IndexType idx) {
|
||||
for(IndexType i =0 ; i<(owner_->N+1) ; ++i)
|
||||
if (idx < owner_->col_ptr[i])
|
||||
return i-1;
|
||||
return end();
|
||||
}
|
||||
//! small get tool
|
||||
DataType get() { return owner_->values[index_]; }
|
||||
|
||||
owner_t* owner_ {nullptr}; //!< Pointer to owner Matrix. MatCol is just a view
|
||||
IndexType vindex_ {IndexType{}}; //!< Virtual index of full matrix
|
||||
IndexType row_ {IndexType{}}; //!< The virtual full matrix row of the object
|
||||
IndexType index_ {IndexType{}}; //!< index to Matrix::rows
|
||||
IndexType begin_ {IndexType{}}; //!< beginning index of the column in Matrix::rows
|
||||
IndexType end_ {IndexType{}}; //!< ending index of the column in Matrix::rows
|
||||
};
|
||||
|
||||
/*!
|
||||
* A proxy Matrix value object/view.
|
||||
*
|
||||
* This object acts as proxy to provide read/write access to an Matrix item.
|
||||
*
|
||||
* @tparam DataType The type of the values of the Matrix matrix
|
||||
* @tparam IndexType The type of the indexes of the Matrix matrix
|
||||
*/
|
||||
template<typename MatrixType>
|
||||
struct MatVal {
|
||||
using owner_t = MatrixType;
|
||||
|
||||
using DataType = typename MatrixType::dataType;
|
||||
using IndexType = typename MatrixType::indexType;
|
||||
|
||||
//!< ctor using all value-row-column data, plus a pointer to owner Matrix object
|
||||
MatVal(owner_t* own, DataType v, IndexType i, IndexType j) :
|
||||
owner_(own), v_(v), i_(i), j_(j) { }
|
||||
MatVal() = default;
|
||||
MatVal(const MatVal&) = delete; //!< make sure there are no copies
|
||||
MatVal& operator=(const MatVal&) = delete; //!< make sure there are no copies
|
||||
MatVal(MatVal&&) = default;
|
||||
MatVal& operator=(MatVal&&) = default;
|
||||
|
||||
//! Operator to return the DataType value implicitly
|
||||
operator DataType() { return v_; }
|
||||
//! Operator to write back to owner the assigned value
|
||||
//! for ex: A(2,3) = 5;
|
||||
MatVal& operator=(DataType v) {
|
||||
v_ = v;
|
||||
owner_->set(v_, i_, j_);
|
||||
return *this;
|
||||
}
|
||||
private:
|
||||
owner_t* owner_{nullptr}; //!< Pointer to owner Matrix. MatVal is just a view.
|
||||
DataType v_{DataType{}}; //!< The value of the row-column pair (for speed)
|
||||
IndexType i_{IndexType{}}; //!< The row
|
||||
IndexType j_{IndexType{}}; //!< the column
|
||||
};
|
||||
|
||||
|
||||
} // namespace mtx
|
||||
|
||||
|
||||
#endif /* MATRIX_HPP_ */
|
@ -1,5 +1,5 @@
|
||||
/**
|
||||
* \file utils.hpp
|
||||
* \file
|
||||
* \brief Utilities header
|
||||
*
|
||||
* \author
|
||||
@ -9,6 +9,7 @@
|
||||
#ifndef UTILS_HPP_
|
||||
#define UTILS_HPP_
|
||||
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <chrono>
|
||||
#include <unistd.h>
|
||||
@ -17,6 +18,18 @@
|
||||
//#include "matrix.hpp"
|
||||
#include "config.h"
|
||||
|
||||
template <typename T> struct MPI_TypeMapper;
|
||||
|
||||
// Specializations for supported types
|
||||
template <> struct MPI_TypeMapper<char> { static MPI_Datatype getType() { return MPI_CHAR; } };
|
||||
template <> struct MPI_TypeMapper<unsigned char> { static MPI_Datatype getType() { return MPI_UNSIGNED_CHAR; } };
|
||||
template <> struct MPI_TypeMapper<short> { static MPI_Datatype getType() { return MPI_SHORT; } };
|
||||
template <> struct MPI_TypeMapper<int> { static MPI_Datatype getType() { return MPI_INT; } };
|
||||
template <> struct MPI_TypeMapper<long> { static MPI_Datatype getType() { return MPI_LONG; } };
|
||||
template <> struct MPI_TypeMapper<long long> { static MPI_Datatype getType() { return MPI_LONG_LONG; } };
|
||||
template <> struct MPI_TypeMapper<unsigned short>{ static MPI_Datatype getType() { return MPI_UNSIGNED_SHORT; } };
|
||||
template <> struct MPI_TypeMapper<unsigned long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG; } };
|
||||
template <> struct MPI_TypeMapper<unsigned long long> { static MPI_Datatype getType() { return MPI_UNSIGNED_LONG_LONG; } };
|
||||
|
||||
template<typename TID = int>
|
||||
struct MPI_t {
|
||||
@ -28,8 +41,10 @@ struct MPI_t {
|
||||
|
||||
// Get the number of processes
|
||||
int size_value, rank_value;
|
||||
size_ = static_cast<ID_t>(MPI_Comm_size(MPI_COMM_WORLD, &size_value));
|
||||
rank_ = static_cast<ID_t>(MPI_Comm_rank(MPI_COMM_WORLD, &rank_value));
|
||||
MPI_Comm_size(MPI_COMM_WORLD, &size_value);
|
||||
MPI_Comm_rank(MPI_COMM_WORLD, &rank_value);
|
||||
size_ = static_cast<ID_t>(size_value);
|
||||
rank_ = static_cast<ID_t>(rank_value);
|
||||
|
||||
// Get the name of the processor
|
||||
char processor_name[MPI_MAX_PROCESSOR_NAME];
|
||||
@ -43,18 +58,24 @@ struct MPI_t {
|
||||
MPI_Finalize();
|
||||
}
|
||||
|
||||
bool exchange(ID_t partner, const void *send_data, void *recv_data, int data_count, MPI_Datatype datatype) {
|
||||
bool ret = true;
|
||||
template<typename T>
|
||||
void exchange(ID_t partner, const std::vector<T>& send_data, std::vector<T>& recv_data, int tag) {
|
||||
using namespace std::string_literals;
|
||||
|
||||
MPI_Status status;
|
||||
MPI_Sendrecv(
|
||||
send_data, data_count, datatype, partner, 0,
|
||||
recv_data, data_count, datatype, partner, 0,
|
||||
MPI_Datatype datatype = MPI_TypeMapper<T>::getType();
|
||||
int send_count = static_cast<int>(send_data.size());
|
||||
int err = MPI_Sendrecv(
|
||||
send_data.data(), send_count, datatype, partner, tag,
|
||||
recv_data.data(), send_count, datatype, partner, tag,
|
||||
MPI_COMM_WORLD, &status
|
||||
);
|
||||
if (status.MPI_ERROR != MPI_SUCCESS)
|
||||
ret = false;
|
||||
|
||||
return ret;
|
||||
if (err != MPI_SUCCESS) {
|
||||
char err_msg[MPI_MAX_ERROR_STRING];
|
||||
int msg_len;
|
||||
MPI_Error_string(err, err_msg, &msg_len);
|
||||
throw std::runtime_error("(MPI) MPI_Sendrecv() - " + std::string (err_msg) + '\n');
|
||||
}
|
||||
}
|
||||
|
||||
// Accessors
|
||||
@ -71,12 +92,84 @@ private:
|
||||
extern MPI_t<> mpi;
|
||||
using mpi_id_t = MPI_t<>::ID_t;
|
||||
|
||||
template <typename Value_t>
|
||||
struct ShadowedVec_t {
|
||||
// STL requirements
|
||||
using value_type = Value_t;
|
||||
using iterator = typename std::vector<Value_t>::iterator;
|
||||
using const_iterator = typename std::vector<Value_t>::const_iterator;
|
||||
using size_type = typename std::vector<Value_t>::size_type;
|
||||
|
||||
// Dispatch to active vector
|
||||
Value_t& operator[](size_type index) { return getActive()[index]; }
|
||||
const Value_t& operator[](size_type index) const { return getActive()[index]; }
|
||||
|
||||
Value_t& at(size_type index) { return getActive().at(index); }
|
||||
const Value_t& at(size_type index) const { return getActive().at(index); }
|
||||
|
||||
void push_back(const Value_t& value) { getActive().push_back(value); }
|
||||
void push_back(Value_t&& value) { getActive().push_back(std::move(value)); }
|
||||
void pop_back() { getActive().pop_back(); }
|
||||
Value_t& front() { return getActive().front(); }
|
||||
const Value_t& front() const { return getActive().front(); }
|
||||
Value_t& back() { return getActive().back(); }
|
||||
const Value_t& back() const { return getActive().back(); }
|
||||
|
||||
iterator begin() { return getActive().begin(); }
|
||||
const_iterator begin() const { return getActive().begin(); }
|
||||
iterator end() { return getActive().end(); }
|
||||
const_iterator end() const { return getActive().end(); }
|
||||
|
||||
size_type size() const { return getActive().size(); }
|
||||
void resize(size_t new_size) {
|
||||
North.resize(new_size);
|
||||
South.resize(new_size);
|
||||
}
|
||||
|
||||
void reserve(size_t new_capacity) {
|
||||
North.reserve(new_capacity);
|
||||
South.reserve(new_capacity);
|
||||
}
|
||||
[[nodiscard]] size_t capacity() const { return getActive().capacity(); }
|
||||
[[nodiscard]] bool empty() const { return getActive().empty(); }
|
||||
|
||||
void clear() { getActive().clear(); }
|
||||
|
||||
void swap(std::vector<Value_t>& other) { getActive().swap(other); }
|
||||
|
||||
// Switching vectors
|
||||
void switch_active() { active = (active == north) ? south : north; }
|
||||
|
||||
// Accessors
|
||||
const std::vector<Value_t>& getNorth() const { return North; }
|
||||
const std::vector<Value_t>& getSouth() const { return South; }
|
||||
std::vector<Value_t>& getActive() {
|
||||
return (active == north) ? North : South;
|
||||
}
|
||||
const std::vector<Value_t>& getActive() const {
|
||||
return (active == north) ? North : South;
|
||||
}
|
||||
std::vector<Value_t>& getShadow() {
|
||||
return (active == north) ? South : North;
|
||||
}
|
||||
const std::vector<Value_t>& getShadow() const {
|
||||
return (active == north) ? South : North;
|
||||
}
|
||||
private:
|
||||
enum { north, south } active{north};
|
||||
std::vector<Value_t> North{};
|
||||
std::vector<Value_t> South{};
|
||||
};
|
||||
|
||||
using distBuffer_t = ShadowedVec_t<distValue_t>;
|
||||
|
||||
extern distBuffer_t Data;
|
||||
|
||||
/*!
|
||||
* A Logger for entire program.
|
||||
*/
|
||||
struct Log {
|
||||
struct Endl {
|
||||
} endl; //!< a tag object to to use it as a new line request.
|
||||
struct Endl {} endl; //!< a tag object to to use it as a new line request.
|
||||
|
||||
//! We provide logging via << operator
|
||||
template<typename T>
|
||||
|
@ -1,212 +0,0 @@
|
||||
/*!
|
||||
* \file
|
||||
* \brief Distributed bitonic implementation.
|
||||
*
|
||||
* \author
|
||||
* Christos Choutouridis AEM:8997
|
||||
* <cchoutou@ece.auth.gr>
|
||||
*/
|
||||
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#if !defined DEBUG
|
||||
#define NDEBUG
|
||||
#endif
|
||||
#include <cassert>
|
||||
|
||||
#include "distbitonic.hpp"
|
||||
|
||||
|
||||
|
||||
/*!
|
||||
* Returns the ascending or descending configuration of the node's sequence based on
|
||||
* the current node (MPI process) and the depth of the sorting network
|
||||
*
|
||||
* @param node The current node (MPI process)
|
||||
* @return True if we need ascending configuration, false otherwise
|
||||
*/
|
||||
template <>
|
||||
bool ascending<SortMode::Bubbletonic>(mpi_id_t node, [[maybe_unused]] size_t depth) noexcept {
|
||||
return (node % 2) == 0;
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the ascending or descending configuration of the node's sequence based on
|
||||
* the current node (MPI process) and the depth of the sorting network
|
||||
*
|
||||
* @param node The current node (MPI process)
|
||||
* @param depth The total depth of the sorting network (same for each step for a given network)
|
||||
*
|
||||
* @return True if we need ascending configuration, false otherwise
|
||||
*/
|
||||
template <>
|
||||
bool ascending<SortMode::Bitonic>(mpi_id_t node, size_t depth) noexcept {
|
||||
return !(node & (1 << depth));
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the node's partner for data exchange during the sorting network iterations
|
||||
* of Bubbletonic
|
||||
*
|
||||
* @param node The current node
|
||||
* @param step The step of the sorting network
|
||||
* @return The node id of the partner for data exchange
|
||||
*/
|
||||
template <>
|
||||
mpi_id_t partner<SortMode::Bubbletonic>(mpi_id_t node, size_t step) noexcept {
|
||||
// return (node % 2 == step % 2) ? node + 1 : node - 1;
|
||||
return (((node+step) % 2) == 0) ? node + 1 : node - 1;
|
||||
}
|
||||
|
||||
/*!
|
||||
* Returns the node's partner for data exchange during the sorting network iterations
|
||||
* of Bitonic
|
||||
*
|
||||
* @param node The current node
|
||||
* @param step The step of the sorting network
|
||||
* @return The node id of the partner for data exchange
|
||||
*/
|
||||
template <>
|
||||
mpi_id_t partner<SortMode::Bitonic>(mpi_id_t node, size_t step) noexcept {
|
||||
return (node ^ (1 << step));
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* Predicate to check if a node keeps the small numbers during the bubbletonic sort network exchange.
|
||||
*
|
||||
* @param node The node for which we check
|
||||
* @param partner The partner of the data exchange
|
||||
* @return True if the node should keep the small values, false otherwise
|
||||
*/
|
||||
template <>
|
||||
bool keepSmall<SortMode::Bubbletonic>(mpi_id_t node, mpi_id_t partner, [[maybe_unused]] size_t depth) noexcept {
|
||||
assert(node != partner);
|
||||
return (node < partner);
|
||||
}
|
||||
|
||||
/*!
|
||||
* Predicate to check if a node keeps the small numbers during the bitonic sort network exchange.
|
||||
*
|
||||
* @param node The node for which we check
|
||||
* @param partner The partner of the data exchange
|
||||
* @param depth The total depth of the sorting network (same for each step for a given network)
|
||||
* @return True if the node should keep the small values, false otherwise
|
||||
*/
|
||||
template <>
|
||||
bool keepSmall<SortMode::Bitonic>(mpi_id_t node, mpi_id_t partner, size_t depth) noexcept {
|
||||
assert(node != partner);
|
||||
return ascending<SortMode::Bitonic>(node, depth) == (node < partner);
|
||||
}
|
||||
|
||||
/*!
|
||||
* Predicate to check if the node is active in the current iteration of the bubbletonic
|
||||
* sort exchange.
|
||||
*
|
||||
* @param node The node to check
|
||||
* @param nodes The total number of nodes
|
||||
* @return True if the node is active, false otherwise
|
||||
*/
|
||||
bool isActive(mpi_id_t node, mpi_id_t nodes) noexcept {
|
||||
return (node >= 0) && (node < (nodes-1));
|
||||
}
|
||||
|
||||
|
||||
void exchange(mpi_id_t node, mpi_id_t partner) {
|
||||
assert(node != partner);
|
||||
}
|
||||
|
||||
void minmax(AllData_t& data, mpi_id_t node, mpi_id_t partner, bool keepsmall) {
|
||||
for (size_t i = 0; i < data[node].size(); ++i) {
|
||||
if (keepsmall && data[node][i] > data[partner][i])
|
||||
std::swap(data[node][i], data[partner][i]);
|
||||
if (!keepsmall && data[node][i] < data[partner][i])
|
||||
std::swap(data[node][i], data[partner][i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void bubbletonic_network(AllData_t& data, mpi_id_t nodes, size_t depth) {
|
||||
for (mpi_id_t node = 0 ; node < nodes ; ++node) { // Currently we do all nodes here!
|
||||
auto part = partner<SortMode::Bubbletonic>(node, depth);
|
||||
auto ks = keepSmall<SortMode::Bubbletonic>(node, part, 0);
|
||||
if (isActive(node, nodes) && node < part) {
|
||||
exchange(node, part);
|
||||
minmax(data, node, part, ks);
|
||||
// elbow-sort here
|
||||
if (ascending<SortMode::Bubbletonic>(node, 0))
|
||||
std::sort(data[node].begin(), data[node].end(), std::less<>());
|
||||
else
|
||||
std::sort(data[node].begin(), data[node].end(), std::greater<>());
|
||||
|
||||
if (ascending<SortMode::Bubbletonic>(part, 0))
|
||||
std::sort(data[part].begin(), data[part].end(), std::less<>());
|
||||
else
|
||||
std::sort(data[part].begin(), data[part].end(), std::greater<>());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void distBubbletonic(mpi_id_t P, AllData_t& data) {
|
||||
for (mpi_id_t node = 0 ; node < P ; ++node) { // Currently we do all nodes here!
|
||||
// Initially sort to create the half part of a bitonic
|
||||
if (ascending<SortMode::Bubbletonic>(node, 0))
|
||||
std::sort(data[node].begin(), data[node].end(), std::less<>());
|
||||
else
|
||||
std::sort(data[node].begin(), data[node].end(), std::greater<>());
|
||||
}
|
||||
|
||||
for (size_t depth = 0; depth < P-1; ++depth) {
|
||||
bubbletonic_network(data, P, depth);
|
||||
}
|
||||
|
||||
// Invert the descending ones
|
||||
for (mpi_id_t node = 0 ; node < P ; ++node) { // Currently we do all nodes here!
|
||||
if (!ascending<SortMode::Bubbletonic>(node, 0))
|
||||
std::sort(data[node].begin(), data[node].end(), std::less<>());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void bitonic_network(AllData_t& data, mpi_id_t nodes, size_t depth) {
|
||||
for (size_t step = depth; step > 0;) {
|
||||
--step;
|
||||
for (mpi_id_t node = 0; node < nodes; ++node) { // Currently we do all nodes here!
|
||||
auto part = partner<SortMode::Bitonic>(node, step);
|
||||
auto ks = keepSmall<SortMode::Bitonic>(node, part, depth);
|
||||
if (node < part) {
|
||||
exchange(node, part);
|
||||
minmax(data, node, part, ks);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void distBitonic(mpi_id_t P, AllData_t& data) {
|
||||
auto p = static_cast<uint32_t>(std::log2(P));
|
||||
|
||||
for (mpi_id_t node = 0 ; node < P ; ++node) { // Currently we do all nodes here!
|
||||
// Initially sort to create the half part of a bitonic
|
||||
if (ascending<SortMode::Bitonic>(node, 0))
|
||||
std::sort(data[node].begin(), data[node].end(), std::less<>());
|
||||
else
|
||||
std::sort(data[node].begin(), data[node].end(), std::greater<>());
|
||||
}
|
||||
|
||||
// Run through sort network using elbow-sort
|
||||
for (size_t depth = 1; depth <= p; ++depth) {
|
||||
bitonic_network(data, P, depth);
|
||||
|
||||
for (mpi_id_t node = 0 ; node < P ; ++node) { // Currently we do all nodes here!
|
||||
// elbow-sort here
|
||||
if (ascending<SortMode::Bitonic>(node, depth))
|
||||
std::sort(data[node].begin(), data[node].end(), std::less<>());
|
||||
else
|
||||
std::sort(data[node].begin(), data[node].end(), std::greater<>());
|
||||
}
|
||||
|
||||
}
|
||||
}
|
31
homework_2/src/distsort.cpp
Normal file
31
homework_2/src/distsort.cpp
Normal file
@ -0,0 +1,31 @@
|
||||
/*!
|
||||
* \file
|
||||
* \brief Distributed sort implementation.
|
||||
*
|
||||
* \author
|
||||
* Christos Choutouridis AEM:8997
|
||||
* <cchoutou@ece.auth.gr>
|
||||
*/
|
||||
|
||||
#if !defined DEBUG
|
||||
#define NDEBUG
|
||||
#endif
|
||||
#include <cassert>
|
||||
|
||||
#include "utils.hpp"
|
||||
#include "distsort.hpp"
|
||||
|
||||
|
||||
/*!
|
||||
* Predicate to check if the node is active in the current iteration of the bubbletonic
|
||||
* sort exchange.
|
||||
*
|
||||
* @param node The node to check
|
||||
* @param nodes The total number of nodes
|
||||
* @return True if the node is active, false otherwise
|
||||
*/
|
||||
bool isActive(mpi_id_t node, size_t nodes) noexcept {
|
||||
assert(nodes > 0);
|
||||
return (node >= 0) && (node < (nodes-1));
|
||||
}
|
||||
|
@ -9,15 +9,19 @@
|
||||
|
||||
#include <exception>
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
|
||||
#include "utils.hpp"
|
||||
#include "config.h"
|
||||
#include "distsort.hpp"
|
||||
|
||||
|
||||
// Global session data
|
||||
session_t session;
|
||||
MPI_t<> mpi;
|
||||
|
||||
distBuffer_t Data;
|
||||
Log logger;
|
||||
Timing timer;
|
||||
|
||||
/*!
|
||||
* A small command line argument parser
|
||||
@ -30,29 +34,46 @@ bool get_options(int argc, char* argv[]){
|
||||
for (int i=1 ; i<argc ; ++i) {
|
||||
std::string arg(argv[i]); // get current argument
|
||||
|
||||
if (arg == "-x" || arg == "--xxxxx") {
|
||||
if (i+2 < argc) {
|
||||
// session.corpusMtxFile = std::string(argv[++i]);
|
||||
// session.corpusDataSet = std::string(argv[++i]);
|
||||
if (arg == "-q" || arg == "--array-size") {
|
||||
if (i+1 < argc) {
|
||||
session.arraySize = 1 << atoi(argv[++i]);
|
||||
}
|
||||
else
|
||||
else {
|
||||
status = false;
|
||||
}
|
||||
|
||||
else if (arg == "-v" || arg == "--verbose")
|
||||
}
|
||||
else if (arg == "--ndebug") {
|
||||
session.ndebug = true;
|
||||
}
|
||||
else if (arg == "-t" || arg == "--timing") {
|
||||
session.timing = true;
|
||||
}
|
||||
else if (arg == "-v" || arg == "--verbose") {
|
||||
session.verbose = true;
|
||||
}
|
||||
else if (arg == "-h" || arg == "--help") {
|
||||
std::cout << "distBitonic - A distributed bitonic sort\n\n";
|
||||
std::cout << "distBitonic -x <> [-v]\n";
|
||||
std::cout << "distbitonic/distbubbletonic - A distributed bitonic sort\n\n";
|
||||
std::cout << "distbitonic -q <> [--ndebug] [-v]\n";
|
||||
std::cout << "distbitonic -h\n";
|
||||
std::cout << "distbubbletonic -q <> [--ndebug] [-v]\n";
|
||||
std::cout << "distbubbletonic -h\n";
|
||||
std::cout << '\n';
|
||||
std::cout << "Options:\n\n";
|
||||
std::cout << " -q | --array-size <size>\n";
|
||||
std::cout << " Selects the array size according to size = 2^q\n\n";
|
||||
std::cout << " --ndebug\n";
|
||||
std::cout << " Skip debug breakpoint when on debug build.\n\n";
|
||||
std::cout << " -t | --timing\n";
|
||||
std::cout << " Request timing measurements output to stdout.\n\n";
|
||||
std::cout << " -v | --verbose\n";
|
||||
std::cout << " Request a more verbose output to stdout.\n\n";
|
||||
std::cout << " -h | --help\n";
|
||||
std::cout << " Prints this and exit.\n\n";
|
||||
std::cout << "Examples:\n\n";
|
||||
std::cout << " ...Example case...:\n";
|
||||
std::cout << " > distBitonic -x <xxxxx> \n\n";
|
||||
std::cout << " mpirun -np 4 distbitonic -q 24\n";
|
||||
std::cout << " Runs distbitonic in 4 MPI processes with 2^24 array points each\n\n";
|
||||
std::cout << " mpirun -np 16 distbubbletonic -q 20\n";
|
||||
std::cout << " Runs distbubbletonic in 16 MPI processes with 2^20 array points each\n\n";
|
||||
|
||||
exit(0);
|
||||
}
|
||||
@ -66,7 +87,6 @@ bool get_options(int argc, char* argv[]){
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if !defined TESTING
|
||||
int main(int argc, char* argv[]) try {
|
||||
// Initialize MPI environment
|
||||
@ -76,7 +96,13 @@ int main(int argc, char* argv[]) try {
|
||||
if (!get_options(argc, argv))
|
||||
exit(1);
|
||||
|
||||
logger << "MPI environment initialized." <<
|
||||
" Rank: " << mpi.rank() <<
|
||||
" Size: " << mpi.size() <<
|
||||
logger.endl;
|
||||
|
||||
#if defined DEBUG
|
||||
#if defined TESTING
|
||||
/*
|
||||
* In case of a debug build we will wait here until sleep_wait
|
||||
* will reset via debugger. In order to do that the user must attach
|
||||
@ -86,24 +112,34 @@ int main(int argc, char* argv[]) try {
|
||||
* $> gdb <program> <PID1>
|
||||
* $> gdb <program> <PID2>
|
||||
*/
|
||||
#if defined TESTING
|
||||
volatile bool sleep_wait = false;
|
||||
#else
|
||||
volatile bool sleep_wait = true;
|
||||
#endif
|
||||
while (sleep_wait)
|
||||
while (sleep_wait && !session.ndebug)
|
||||
sleep(1);
|
||||
#endif
|
||||
|
||||
// Print off a hello world message
|
||||
// std::cout << "Hello world from processor: " << mpi.processor_name
|
||||
// << " rank " << mpi.world_rank
|
||||
// << " out of " << mpi.world_size << " processors\n";
|
||||
logger << "Initialize local array of " << session.arraySize << " elements" << logger.endl;
|
||||
std::srand(unsigned(std::time(nullptr)));
|
||||
Data.resize(session.arraySize);
|
||||
std::generate(Data.begin(), Data.end(), std::rand);
|
||||
|
||||
if (mpi.rank() == 0)
|
||||
logger << "Starting distributed sorting ... ";
|
||||
timer.start();
|
||||
#if CODE_VERSION == BUBBLETONIC
|
||||
distBubbletonic(Data, mpi.size());
|
||||
#else
|
||||
distBitonic (Data, mpi.size());
|
||||
#endif
|
||||
timer.stop();
|
||||
if (mpi.rank() == 0)
|
||||
logger << " Done." << logger.endl;
|
||||
std::string timeMsg = "rank " + std::to_string(mpi.rank());
|
||||
timer.print_dt(timeMsg.c_str());
|
||||
|
||||
// distBitonic (2, Data);
|
||||
// distBitonic (4, Data);
|
||||
|
||||
std::cout << "[Data]: Rank " << mpi.rank() << ": [" << (int)Data.front() << " .. " << (int)Data.back() << "]" << std::endl;
|
||||
mpi.finalize();
|
||||
return 0;
|
||||
}
|
||||
|
@ -11,7 +11,7 @@
|
||||
|
||||
#include <algorithm> // rand/srand
|
||||
#include <ctime> // rand/srand
|
||||
#include "distbitonic.hpp"
|
||||
#include "distsort.hpp"
|
||||
|
||||
|
||||
|
||||
@ -328,19 +328,20 @@ TEST(TdistBitonic_UT, keepsmall_test7) {
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
TEST(TdistBitonic_UT, distBitonic_test1) {
|
||||
AllData_t ts_Data {
|
||||
Data_t (8), Data_t (8)
|
||||
ShadowedVec_t (8), ShadowedVec_t (8)
|
||||
};
|
||||
|
||||
std::srand(unsigned(std::time(nullptr)));
|
||||
for (auto& v : ts_Data) {
|
||||
(unsigned(std::time(nullptr)));
|
||||
for (auto
|
||||
std::srand& v : ts_Data) {
|
||||
std::generate(v.begin(), v.end(), std::rand);
|
||||
}
|
||||
|
||||
distBitonic(2, ts_Data);
|
||||
|
||||
auto max = std::numeric_limits<Data_t::value_type>::min();
|
||||
auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
|
||||
for (auto& v : ts_Data) {
|
||||
EXPECT_EQ((max <= v[0]), true);
|
||||
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
|
||||
@ -350,7 +351,7 @@ TEST(TdistBitonic_UT, distBitonic_test1) {
|
||||
|
||||
TEST(TdistBitonic_UT, distBitonic_test2) {
|
||||
AllData_t ts_Data {
|
||||
Data_t (8), Data_t (8), Data_t (8), Data_t (8)
|
||||
ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8)
|
||||
};
|
||||
|
||||
std::srand(unsigned(std::time(nullptr)));
|
||||
@ -360,7 +361,7 @@ TEST(TdistBitonic_UT, distBitonic_test2) {
|
||||
|
||||
distBitonic(4, ts_Data);
|
||||
|
||||
auto max = std::numeric_limits<Data_t::value_type>::min();
|
||||
auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
|
||||
for (auto& v : ts_Data) {
|
||||
EXPECT_EQ((max <= v[0]), true);
|
||||
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
|
||||
@ -370,8 +371,8 @@ TEST(TdistBitonic_UT, distBitonic_test2) {
|
||||
|
||||
TEST(TdistBitonic_UT, distBitonic_test3) {
|
||||
AllData_t ts_Data {
|
||||
Data_t (32), Data_t (32), Data_t (32), Data_t (32),
|
||||
Data_t (32), Data_t (32), Data_t (32), Data_t (32)
|
||||
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32),
|
||||
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32)
|
||||
};
|
||||
|
||||
std::srand(unsigned(std::time(nullptr)));
|
||||
@ -381,10 +382,12 @@ TEST(TdistBitonic_UT, distBitonic_test3) {
|
||||
|
||||
distBitonic(8, ts_Data);
|
||||
|
||||
auto max = std::numeric_limits<Data_t::value_type>::min();
|
||||
auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
|
||||
for (auto& v : ts_Data) {
|
||||
EXPECT_EQ((max <= v[0]), true);
|
||||
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
|
||||
max = v.back();
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
@ -11,7 +11,7 @@
|
||||
|
||||
#include <algorithm> // rand/srand
|
||||
#include <ctime> // rand/srand
|
||||
#include "distbitonic.hpp"
|
||||
#include "distsort.hpp"
|
||||
|
||||
|
||||
|
||||
@ -120,10 +120,10 @@ TEST(TdistBubbletonic_UT, keepsmall_test2) {
|
||||
}
|
||||
|
||||
|
||||
|
||||
#if 0
|
||||
TEST(TdistBubbletonic_UT, distBubbletonic_test1) {
|
||||
AllData_t ts_Data {
|
||||
Data_t (8), Data_t (8)
|
||||
ShadowedVec_t (8), ShadowedVec_t (8)
|
||||
};
|
||||
|
||||
std::srand(unsigned(std::time(nullptr)));
|
||||
@ -133,7 +133,7 @@ TEST(TdistBubbletonic_UT, distBubbletonic_test1) {
|
||||
|
||||
distBubbletonic(2, ts_Data);
|
||||
|
||||
auto max = std::numeric_limits<Data_t::value_type>::min();
|
||||
auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
|
||||
for (auto& v : ts_Data) {
|
||||
EXPECT_EQ((max <= v[0]), true);
|
||||
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
|
||||
@ -144,7 +144,7 @@ TEST(TdistBubbletonic_UT, distBubbletonic_test1) {
|
||||
|
||||
TEST(TdistBubbletonic_UT, distBubbletonic_test2) {
|
||||
AllData_t ts_Data {
|
||||
Data_t (8), Data_t (8), Data_t (8), Data_t (8)
|
||||
ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8), ShadowedVec_t (8)
|
||||
};
|
||||
|
||||
std::srand(unsigned(std::time(nullptr)));
|
||||
@ -154,7 +154,7 @@ TEST(TdistBubbletonic_UT, distBubbletonic_test2) {
|
||||
|
||||
distBubbletonic(4, ts_Data);
|
||||
|
||||
auto max = std::numeric_limits<Data_t::value_type>::min();
|
||||
auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
|
||||
for (auto& v : ts_Data) {
|
||||
EXPECT_EQ((max <= v[0]), true);
|
||||
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
|
||||
@ -164,8 +164,8 @@ TEST(TdistBubbletonic_UT, distBubbletonic_test2) {
|
||||
|
||||
TEST(TdistBubbletonic_UT, distBubbletonic_test3) {
|
||||
AllData_t ts_Data {
|
||||
Data_t (32), Data_t (32), Data_t (32), Data_t (32),
|
||||
Data_t (32), Data_t (32), Data_t (32), Data_t (32)
|
||||
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32),
|
||||
ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32), ShadowedVec_t (32)
|
||||
};
|
||||
|
||||
std::srand(unsigned(std::time(nullptr)));
|
||||
@ -175,10 +175,11 @@ TEST(TdistBubbletonic_UT, distBubbletonic_test3) {
|
||||
|
||||
distBubbletonic(8, ts_Data);
|
||||
|
||||
auto max = std::numeric_limits<Data_t::value_type>::min();
|
||||
auto max = std::numeric_limits<ShadowedVec_t::value_type>::min();
|
||||
for (auto& v : ts_Data) {
|
||||
EXPECT_EQ((max <= v[0]), true);
|
||||
EXPECT_EQ(std::is_sorted(v.begin(), v.end()), true);
|
||||
max = v.back();
|
||||
}
|
||||
}
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user