|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- function [N, D] = mergeResultsWithM(N1, D1, N2, D2, C1, C2, k, m)
- % Merge neighbors from two sources with a limit on candidate neighbors (m)
-
- numQueries = size(N1, 1); % Number of queries in this subset
- maxCandidates = min(m, size(N1, 2) + size(N2, 2)); % Maximum candidates to consider
-
- % Combine distances and neighbors
- N_combined = [N1, N2 + size(C1, 1)]; % Adjust indices for C2
- D_combined = [D1, D2];
-
- % Sort distances and keep only top-m candidates for each query
- [D_sorted, idx] = sort(D_combined, 2, 'ascend');
- D_sorted = D_sorted(:, 1:maxCandidates); % Keep only top-m distances
- idx = idx(:, 1:maxCandidates); % Keep indices corresponding to top-m distances
-
- % Select the corresponding neighbors
- %N_sorted = N_combined(sub2ind(size(N_combined), ...
- % repmat((1:numQueries)', 1, maxCandidates), idx));
- N_sorted = zeros(numQueries, maxCandidates); % Initialize output
- for i = 1:numQueries
- for j = 1:maxCandidates
- N_sorted(i, j) = N_combined(i, idx(i, j));
- end
- end
-
- % Handle cases where m < k
- if maxCandidates < k
- % Pad with Inf distances and invalid indices
- D_sorted = [D_sorted, Inf(numQueries, k - maxCandidates)];
- N_sorted = [N_sorted, zeros(numQueries, k - maxCandidates)];
- end
-
- % Extract top-k from the reduced set of candidates
- [D, idx_final] = sort(D_sorted, 2, 'ascend');
- D = D(:, 1:k); % Final top-k distances
- %N = N_sorted(sub2ind(size(N_sorted), ...
- % repmat((1:numQueries)', 1, k), idx_final(:, 1:k)));
- % Extract top-k neighbors using a loop
- N = zeros(numQueries, k); % Initialize output
- for i = 1:numQueries
- for j = 1:k
- N(i, j) = N_sorted(i, idx_final(i, j));
- end
- end
-
- end
|