AUTH's THMMY "Parallel and distributed systems" course assignments.
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

v1.hpp 6.7 KiB

il y a 3 jours
il y a 3 jours
il y a 3 jours
il y a 3 jours
il y a 3 jours
il y a 3 jours
il y a 3 jours
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215
  1. /**
  2. * \file v1.hpp
  3. * \brief
  4. *
  5. * \author
  6. * Christos Choutouridis AEM:8997
  7. * <cchoutou@ece.auth.gr>
  8. */
  9. #ifndef V1_HPP_
  10. #define V1_HPP_
  11. #include <vector>
  12. #include <algorithm>
  13. #include "matrix.hpp"
  14. #include "v0.hpp"
  15. #include "config.h"
  16. #if defined CILK
  17. #include <cilk/cilk.h>
  18. #include <cilk/cilk_api.h>
  19. //#include <cilk/reducer_opadd.h>
  20. #elif defined OMP
  21. #include <omp.h>
  22. #elif defined PTHREADS
  23. #include <thread>
  24. #include <numeric>
  25. #include <functional>
  26. //#include <random>
  27. #else
  28. #endif
  29. void init_workers();
  30. namespace v1 {
  31. /*!
  32. *
  33. * Merge knnsearch results and select the closest neighbors
  34. *
  35. * \tparam DataType
  36. * \tparam IndexType
  37. * \param N1 Neighbors results from one knnsearch
  38. * \param D1 Distances results from one knnsearcs
  39. * \param N2 Neighbors results from second knnsearch
  40. * \param D2 Distances results from second knnsearch
  41. * \param k How many
  42. * \param m How accurate
  43. * \param N Output for Neighbors
  44. * \param D Output for Distances
  45. */
  46. template <typename DataType, typename IndexType>
  47. void mergeResultsWithM(mtx::Matrix<IndexType>& N1, mtx::Matrix<DataType>& D1,
  48. mtx::Matrix<IndexType>& N2, mtx::Matrix<DataType>& D2,
  49. size_t k, size_t m,
  50. mtx::Matrix<IndexType>& N, mtx::Matrix<DataType>& D) {
  51. size_t numQueries = N1.rows();
  52. size_t maxCandidates = std::min((IndexType)m, (IndexType)(N1.columns() + N2.columns()));
  53. for (size_t q = 0; q < numQueries; ++q) {
  54. // Combine distances and neighbors
  55. std::vector<std::pair<DataType, IndexType>> candidates(N1.columns() + N2.columns());
  56. // Concatenate N1 and N2 rows
  57. for (size_t i = 0; i < N1.columns(); ++i) {
  58. candidates[i] = {D1.get(q, i), N1.get(q, i)};
  59. }
  60. for (size_t i = 0; i < N2.columns(); ++i) {
  61. candidates[i + N1.columns()] = {D2.get(q, i), N2.get(q, i)};
  62. }
  63. // Keep only the top-m candidates
  64. v0::quickselect(candidates, maxCandidates);
  65. // Sort the top-m candidates
  66. std::sort(candidates.begin(), candidates.begin() + maxCandidates);
  67. // If m < k, pad the remaining slots with invalid values
  68. for (size_t i = 0; i < k; ++i) {
  69. if (i < maxCandidates) {
  70. D.set(candidates[i].first, q, i);
  71. N.set(candidates[i].second, q, i);
  72. } else {
  73. D.set(std::numeric_limits<DataType>::infinity(), q, i);
  74. N.set(static_cast<IndexType>(-1), q, i); // Invalid index (end)
  75. }
  76. }
  77. }
  78. }
  79. /*!
  80. * The main parallelizable body
  81. */
  82. template<typename MatrixD, typename MatrixI>
  83. void worker_body (std::vector<MatrixD>& corpus_slices,
  84. std::vector<MatrixD>& query_slices,
  85. MatrixI& idx,
  86. MatrixD& dst,
  87. size_t slice,
  88. size_t num_slices, size_t corpus_slice_size, size_t query_slice_size,
  89. size_t k,
  90. size_t m) {
  91. // "load" types
  92. using DstType = typename MatrixD::dataType;
  93. using IdxType = typename MatrixI::dataType;
  94. for (size_t ci = 0; ci < num_slices; ++ci) {
  95. size_t idx_offset = ci * corpus_slice_size;
  96. // Intermediate matrixes for intermediate results
  97. MatrixI temp_idx(query_slices[slice].rows(), k);
  98. MatrixD temp_dst(query_slices[slice].rows(), k);
  99. // kNN for each combination
  100. v0::knnsearch(corpus_slices[ci], query_slices[slice], idx_offset, k, m, temp_idx, temp_dst);
  101. // Merge temporary results to final results
  102. MatrixI idx_slice((IdxType*)idx.data(), slice * query_slice_size, query_slices[slice].rows(), k);
  103. MatrixD dst_slice((DstType*)dst.data(), slice * query_slice_size, query_slices[slice].rows(), k);
  104. mergeResultsWithM(idx_slice, dst_slice, temp_idx, temp_dst, k, m, idx_slice, dst_slice);
  105. }
  106. }
  107. /*!
  108. * \param C Is a MxD matrix (Corpus)
  109. * \param Q Is a NxD matrix (Query)
  110. * \param num_slices How many slices to Corpus-Query
  111. * \param k The number of nearest neighbors needed
  112. * \param m accuracy
  113. * \param idx Is the Nxk matrix with the k indexes of the C points, that are
  114. * neighbors of the nth point of Q
  115. * \param dst Is the Nxk matrix with the k distances to the C points of the nth
  116. * point of Q
  117. */
  118. template<typename MatrixD, typename MatrixI>
  119. void knnsearch(MatrixD& C, MatrixD& Q, size_t num_slices, size_t k, size_t m, MatrixI& idx, MatrixD& dst) {
  120. using DstType = typename MatrixD::dataType;
  121. using IdxType = typename MatrixI::dataType;
  122. //Slice calculations
  123. size_t corpus_slice_size = C.rows() / ((num_slices == 0)? 1:num_slices);
  124. size_t query_slice_size = Q.rows() / ((num_slices == 0)? 1:num_slices);
  125. // Make slices
  126. std::vector<MatrixD> corpus_slices;
  127. std::vector<MatrixD> query_slices;
  128. for (size_t i = 0; i < num_slices; ++i) {
  129. corpus_slices.emplace_back(
  130. (DstType*)C.data(),
  131. i * corpus_slice_size,
  132. (i == num_slices - 1 ? C.rows() - i * corpus_slice_size : corpus_slice_size),
  133. C.columns());
  134. query_slices.emplace_back(
  135. (DstType*)Q.data(),
  136. i * query_slice_size,
  137. (i == num_slices - 1 ? Q.rows() - i * query_slice_size : query_slice_size),
  138. Q.columns());
  139. }
  140. // Intermediate results
  141. for (size_t i = 0; i < dst.rows(); ++i) {
  142. for (size_t j = 0; j < dst.columns(); ++j) {
  143. dst.set(std::numeric_limits<DstType>::infinity(), i, j);
  144. idx.set(static_cast<IdxType>(-1), i, j);
  145. }
  146. }
  147. // Main loop
  148. #if defined OMP
  149. #pragma omp parallel for
  150. for (size_t qi = 0; qi < num_slices; ++qi) {
  151. worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
  152. }
  153. #elif defined CILK
  154. cilk_for (size_t qi = 0; qi < num_slices; ++qi) {
  155. worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
  156. }
  157. #elif defined PTHREADS
  158. std::vector<std::thread> workers;
  159. for (size_t qi = 0; qi < num_slices; ++qi) {
  160. workers.push_back(
  161. std::thread (worker_body<MatrixD, MatrixI>,
  162. std::ref(corpus_slices), std::ref(query_slices),
  163. std::ref(idx), std::ref(dst),
  164. qi,
  165. num_slices, corpus_slice_size, query_slice_size,
  166. k, m)
  167. );
  168. }
  169. // Join threads
  170. std::for_each(workers.begin(), workers.end(), [](std::thread& t){
  171. t.join();
  172. });
  173. #else
  174. for (size_t qi = 0; qi < num_slices; ++qi) {
  175. for (size_t qi = 0; qi < num_slices; ++qi) {
  176. worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
  177. }
  178. }
  179. #endif
  180. }
  181. } // namespace v1
  182. #endif /* V1_HPP_ */