AUTH's THMMY "Parallel and distributed systems" course assignments.
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

v1.hpp 5.8 KiB

il y a 5 jours
il y a 5 jours
il y a 5 jours
il y a 5 jours
il y a 5 jours
il y a 5 jours
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189
  1. /**
  2. * \file v1.hpp
  3. * \brief
  4. *
  5. * \author
  6. * Christos Choutouridis AEM:8997
  7. * <cchoutou@ece.auth.gr>
  8. */
  9. #ifndef V1_HPP_
  10. #define V1_HPP_
  11. #include <vector>
  12. #include <algorithm>
  13. #include "matrix.hpp"
  14. #include "v0.hpp"
  15. #include "config.h"
  16. #if defined CILK
  17. #include <cilk/cilk.h>
  18. #include <cilk/cilk_api.h>
  19. //#include <cilk/reducer_opadd.h>
  20. #elif defined OMP
  21. #include <omp.h>
  22. #elif defined PTHREADS
  23. #include <thread>
  24. #include <numeric>
  25. #include <functional>
  26. //#include <random>
  27. #else
  28. #endif
  29. void init_workers();
  30. namespace v1 {
  31. template <typename DataType, typename IndexType>
  32. void mergeResultsWithM(mtx::Matrix<IndexType>& N1, mtx::Matrix<DataType>& D1,
  33. mtx::Matrix<IndexType>& N2, mtx::Matrix<DataType>& D2,
  34. size_t k, size_t m,
  35. mtx::Matrix<IndexType>& N, mtx::Matrix<DataType>& D) {
  36. size_t numQueries = N1.rows();
  37. size_t maxCandidates = std::min((IndexType)m, (IndexType)(N1.columns() + N2.columns()));
  38. for (size_t q = 0; q < numQueries; ++q) {
  39. // Combine distances and neighbors
  40. std::vector<std::pair<DataType, IndexType>> candidates(N1.columns() + N2.columns());
  41. // Concatenate N1 and N2 rows
  42. for (size_t i = 0; i < N1.columns(); ++i) {
  43. candidates[i] = {D1.get(q, i), N1.get(q, i)};
  44. }
  45. for (size_t i = 0; i < N2.columns(); ++i) {
  46. candidates[i + N1.columns()] = {D2.get(q, i), N2.get(q, i)};
  47. }
  48. // Keep only the top-m candidates
  49. v0::quickselect(candidates, maxCandidates);
  50. // Sort the top-m candidates
  51. std::sort(candidates.begin(), candidates.begin() + maxCandidates);
  52. // If m < k, pad the remaining slots with invalid values
  53. for (size_t i = 0; i < k; ++i) {
  54. if (i < maxCandidates) {
  55. D.set(candidates[i].first, q, i);
  56. N.set(candidates[i].second, q, i);
  57. } else {
  58. D.set(std::numeric_limits<DataType>::infinity(), q, i);
  59. N.set(static_cast<IndexType>(-1), q, i); // Invalid index (end)
  60. }
  61. }
  62. }
  63. }
  64. template<typename MatrixD, typename MatrixI>
  65. void worker_body (std::vector<MatrixD>& corpus_slices,
  66. std::vector<MatrixD>& query_slices,
  67. MatrixI& idx,
  68. MatrixD& dst,
  69. size_t slice,
  70. size_t num_slices, size_t corpus_slice_size, size_t query_slice_size,
  71. size_t k,
  72. size_t m) {
  73. // "load" types
  74. using DstType = typename MatrixD::dataType;
  75. using IdxType = typename MatrixI::dataType;
  76. for (size_t ci = 0; ci < num_slices; ++ci) {
  77. size_t idx_offset = ci * corpus_slice_size;
  78. // Intermediate matrixes for intermediate results
  79. MatrixI temp_idx(query_slices[slice].rows(), k);
  80. MatrixD temp_dst(query_slices[slice].rows(), k);
  81. // kNN for each combination
  82. v0::knnsearch(corpus_slices[ci], query_slices[slice], idx_offset, k, m, temp_idx, temp_dst);
  83. // Merge temporary results to final results
  84. MatrixI idx_slice((IdxType*)idx.data(), slice * query_slice_size, query_slices[slice].rows(), k);
  85. MatrixD dst_slice((DstType*)dst.data(), slice * query_slice_size, query_slices[slice].rows(), k);
  86. mergeResultsWithM(idx_slice, dst_slice, temp_idx, temp_dst, k, m, idx_slice, dst_slice);
  87. }
  88. }
  89. template<typename MatrixD, typename MatrixI>
  90. void knnsearch(MatrixD& C, MatrixD& Q, size_t num_slices, size_t k, size_t m, MatrixI& idx, MatrixD& dst) {
  91. using DstType = typename MatrixD::dataType;
  92. using IdxType = typename MatrixI::dataType;
  93. //Slice calculations
  94. size_t corpus_slice_size = C.rows() / ((num_slices == 0)? 1:num_slices);
  95. size_t query_slice_size = Q.rows() / ((num_slices == 0)? 1:num_slices);
  96. // Make slices
  97. std::vector<MatrixD> corpus_slices;
  98. std::vector<MatrixD> query_slices;
  99. for (size_t i = 0; i < num_slices; ++i) {
  100. corpus_slices.emplace_back(
  101. (DstType*)C.data(),
  102. i * corpus_slice_size,
  103. (i == num_slices - 1 ? C.rows() - i * corpus_slice_size : corpus_slice_size),
  104. C.columns());
  105. query_slices.emplace_back(
  106. (DstType*)Q.data(),
  107. i * query_slice_size,
  108. (i == num_slices - 1 ? Q.rows() - i * query_slice_size : query_slice_size),
  109. Q.columns());
  110. }
  111. // Intermediate results
  112. for (size_t i = 0; i < dst.rows(); ++i) {
  113. for (size_t j = 0; j < dst.columns(); ++j) {
  114. dst.set(std::numeric_limits<DstType>::infinity(), i, j);
  115. idx.set(static_cast<IdxType>(-1), i, j);
  116. }
  117. }
  118. // Main loop
  119. #if defined OMP
  120. #pragma omp parallel for
  121. for (size_t qi = 0; qi < num_slices; ++qi) {
  122. for (size_t qi = 0; qi < num_slices; ++qi) {
  123. worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
  124. }
  125. }
  126. #elif defined CILK
  127. cilk_for (size_t qi = 0; qi < num_slices; ++qi) {
  128. for (size_t qi = 0; qi < num_slices; ++qi) {
  129. worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
  130. }
  131. }
  132. #elif defined PTHREADS
  133. std::vector<std::thread> workers;
  134. for (size_t qi = 0; qi < num_slices; ++qi) {
  135. workers.push_back(
  136. std::thread (worker_body<MatrixD, MatrixI>,
  137. std::ref(corpus_slices), std::ref(query_slices),
  138. std::ref(idx), std::ref(dst),
  139. qi,
  140. num_slices, corpus_slice_size, query_slice_size,
  141. k, m)
  142. );
  143. }
  144. // Join threads
  145. std::for_each(workers.begin(), workers.end(), [](std::thread& t){
  146. t.join();
  147. });
  148. #else
  149. for (size_t qi = 0; qi < num_slices; ++qi) {
  150. for (size_t qi = 0; qi < num_slices; ++qi) {
  151. worker_body (corpus_slices, query_slices, idx, dst, qi, num_slices, corpus_slice_size, query_slice_size, k, m);
  152. }
  153. }
  154. #endif
  155. }
  156. } // namespace v1
  157. #endif /* V1_HPP_ */