AUTH's THMMY "Parallel and distributed systems" course assignments.
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

il y a 5 jours
il y a 5 jours
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. %
  2. %
  3. %
  4. %
  5. %
  6. %
  7. C1 = [
  8. 0.8147 0.1576;
  9. 0.9058 0.9706;
  10. 0.1270 0.9572;
  11. 0.9134 0.4854;
  12. 0.6324 0.8003;
  13. 0.0975 0.1419;
  14. 0.2785 0.4218;
  15. 0.5469 0.9157;
  16. 0.9575 0.7922;
  17. 0.9649 0.9595 ];
  18. Q1 = [
  19. 0.6557 0.7577;
  20. 0.0357 0.7431;
  21. 0.8491 0.3922;
  22. 0.9340 0.6555;
  23. 0.6787 0.1712 ];
  24. C2 = [
  25. 0.7060 0.4456 0.5060 0.6160;
  26. 0.0318 0.6463 0.6991 0.4733;
  27. 0.2769 0.7094 0.8909 0.3517;
  28. 0.0462 0.7547 0.9593 0.8308;
  29. 0.0971 0.2760 0.5472 0.5853;
  30. 0.8235 0.6797 0.1386 0.5497;
  31. 0.6948 0.6551 0.1493 0.9172;
  32. 0.3171 0.1626 0.2575 0.2858;
  33. 0.9502 0.1190 0.8407 0.7572;
  34. 0.0344 0.4984 0.2543 0.7537;
  35. 0.4387 0.9597 0.8143 0.3804;
  36. 0.3816 0.3404 0.2435 0.5678;
  37. 0.7655 0.5853 0.9293 0.0759;
  38. 0.7952 0.2238 0.3500 0.0540;
  39. 0.1869 0.7513 0.1966 0.5308;
  40. 0.4898 0.2551 0.2511 0.7792 ];
  41. Q2 = [
  42. 0.9340 0.3112 0.4505 0.0782;
  43. 0.1299 0.5285 0.0838 0.4427;
  44. 0.5688 0.1656 0.2290 0.1067;
  45. 0.4694 0.6020 0.9133 0.9619;
  46. 0.0119 0.2630 0.1524 0.0046;
  47. 0.3371 0.6541 0.8258 0.7749;
  48. 0.1622 0.6892 0.5383 0.8173;
  49. 0.7943 0.7482 0.9961 0.8687 ];
  50. D1_exp = [
  51. 0.6208 0.9745 0.2371 0.5120 0.1367;
  52. 0.3284 0.8993 0.5811 0.3164 0.8310;
  53. 0.5651 0.2327 0.9169 0.8616 0.9603;
  54. 0.3749 0.9147 0.1132 0.1713 0.3921;
  55. 0.0485 0.5994 0.4621 0.3346 0.6308;
  56. 0.8312 0.6044 0.7922 0.9815 0.5819;
  57. 0.5052 0.4028 0.5714 0.6959 0.4722;
  58. 0.1919 0.5395 0.6045 0.4665 0.7561;
  59. 0.3037 0.9231 0.4144 0.1387 0.6807;
  60. 0.3692 0.9540 0.5790 0.3056 0.8386 ];
  61. D2_exp = [
  62. 0.6020 0.7396 0.6583 0.6050 1.0070 0.5542 0.6298 0.6352;
  63. 1.0696 0.6348 0.9353 0.6914 0.8160 0.4475 0.4037 0.9145;
  64. 0.9268 0.8450 0.9376 0.6492 0.9671 0.4360 0.5956 0.7400;
  65. 1.3455 0.9876 1.2953 0.4709 1.2557 0.3402 0.4417 0.7500;
  66. 0.9839 0.5476 0.7517 0.7216 0.7074 0.5605 0.4784 0.9954;
  67. 0.6839 0.7200 0.7305 0.9495 1.0628 0.8718 0.8178 0.9179;
  68. 0.9850 0.7514 0.9585 0.7996 1.2054 0.7784 0.6680 0.8591;
  69. 0.6950 0.4730 0.3103 1.0504 0.4397 0.8967 0.8140 1.2066;
  70. 0.8065 1.2298 0.9722 0.7153 1.3933 0.8141 1.0204 0.6758;
  71. 1.1572 0.3686 0.9031 0.8232 0.7921 0.6656 0.3708 1.0970;
  72. 0.9432 0.9049 1.0320 0.6905 1.1167 0.5094 0.6455 0.6653;
  73. 0.7672 0.3740 0.5277 0.8247 0.6842 0.6945 0.5648 0.9968;
  74. 0.5768 1.1210 0.8403 0.9345 1.1316 0.8292 1.0380 0.8127;
  75. 0.1939 0.8703 0.2684 1.1794 0.8103 1.0683 1.1115 1.1646;
  76. 1.0106 0.2708 0.8184 0.8954 0.7402 0.6982 0.4509 1.0594;
  77. 0.8554 0.5878 0.6834 0.7699 0.9155 0.7161 0.6162 0.9481 ];
  78. % tests
  79. D1 = dist2(C1, Q1);
  80. if norm (D1-pdist2(C1, Q1), 'fro') > 0.01
  81. disp('Error in dist2(C1, Q1)');
  82. end
  83. D2 = dist2(C2, Q2);
  84. if norm (D2-pdist2(C2, Q2), 'fro') > 0.01
  85. disp('Error in dist2(C2, Q2)');
  86. end
  87. D2 = dist2(C2, C2);
  88. if norm (D2-pdist2(C2, C2), 'fro') > 0.01
  89. disp('Error in dist2(C2, C2)');
  90. end
  91. %C = rand(10000, 2); % Corpus
  92. %Q = rand(10000, 2); % Queries
  93. C = rand(20000, 2); % Δύο clusters
  94. Q = C;
  95. %Q = rand(10000, 2); % Queries κοντά στο μέσο
  96. k = 100; % Number of neighbors
  97. m = 100; % Max candidates per query
  98. global count;
  99. count =0;
  100. tic; [pi, pd] = recursiveKNN(C, Q, k, m); toc
  101. count
  102. tic; [si, sd] = knnsearch(C, Q, 'k', k); toc
  103. [a,b] = size(si);
  104. all_neighbors = a*b
  105. accuracy = 1 - nnz(si-pi)/all_neighbors
  106. false_neighbors = nnz(sd-pd)