|
- %
- % Keeping epsilon fixed, test the iteration needed for different lambda
- % values.
- %
-
-
- % Clear workspace and load the functions and region
- clear
- addpath('..');
- GivenEnv;
-
- % * epsilon: e = 0.001
- % * lambda: l > 2e = 0.001
- % * dl: A small step away from 2e
- % dl = 0.0001
- % * lambda_max: 0.1
- % * N: 50 points
-
- N = 50;
- epsilon = 0.001;
- dl = 0.0001;
- lambda_max= 0.1;
- lambda = linspace(2*epsilon + dl, lambda_max, N);
- k = zeros(1, N); % preallocate k
-
-
- %
- % * Call the bisection method for each lambda value for each function and
- % keep the number of iterations needed.
- % * Plot the iterations k(lambda) for each function
- %
-
- for i = 1:length(funs)
- for j = 1:N
- [a, b, k(j)] = bisection(funs{i}, a_0, b_0, epsilon, lambda(j));
- end
- subplot(1, length(funs), i)
- plot(lambda, k, '-b', 'LineWidth', 1.0)
- title(titles(i), 'Interpreter', 'latex')
- xlabel('lambda')
- ylabel('Iterations')
- end
-
-
|