|
- % Genetic Algorithm for Minimizing Network Traversal Time
-
- clc;
- clear;
- close all;
-
- % Problem Parameters
- N = 17; % Number of roads
- t = 1.5 * ones(1, N); % Fixed time for each road
- a = [1.25 * ones(1, 5), 1.5 * ones(1, 5), ones(1, 7)]; % Weighting factor
- c = [
- 54.13, 21.56, 34.08, 49.19, 33.03, 21.84, 29.96, 24.87, 47.24, 33.97, ...
- 26.89, 32.76, 39.98, 37.12, 53.83, 61.65, 59.73]; % Road capacities
- V = 100; % Incoming vehicle rate
-
- % Travel Time Function
- travelTime = @(xi, ti, ai, ci) ti + ai * xi / (1 - xi / ci);
- % Normalization Function (Infinite norm normalized to S)
- normalizeSum = @(x, S) (x ./ sum(x)) * S; % Ensure sum of single row x equals S
- normalizeSum2 = @(x, S) (x ./ sum(x, 2)) * S; % Ensure sum of each row of 2D matrix x equals S
-
- % Genetic Algorithm Parameters
- popSize = 36; % Population size
- maxGen = 2000; % Maximum number of generations
- mutationRate = 0.1; % Mutation probability
-
- % Initialize Population
- pop = rand(popSize, N) .* c; % Random initial solutions (0 <= x <= c)
- pop = normalizeSum2(pop, V); % Ensure sum of each solution equals V
-
- newPop = zeros(popSize, N); % Pre-allocate new population buffer
- bestFitness = zeros(maxGen, 1); % Result array
-
- % Genetic Algorithm Execution
- for gen = 1:maxGen
- % Fitness Calculation
- fitness = arrayfun(@(i) fitnessFunction(pop(i, :), t, a, c, V, travelTime), 1:popSize);
-
- % Selection
- [~, idx] = sort(fitness); % Sort based on fitness (ascending order)
- pop = pop(idx, :); % Retain the best solutions
-
- % Keep the best chromosome
- bestFitness(gen) = fitnessFunction(pop(1, :), t, a, c, V, travelTime);
-
- % Crossover
- newPop(1:popSize/2, :) = pop(1:popSize/2, :); % Retain top half
- for i = 1:popSize/2
- parent1 = newPop(randi(popSize/2), :);
- parent2 = newPop(randi(popSize/2), :);
- crossPoint = randi(N);
- child = [parent1(1:crossPoint), parent2(crossPoint+1:end)];
- child = normalizeSum(child, V);
- newPop(popSize/2 + i, :) = child;
- end
-
- % Mutation
- for i = 1:popSize
- if rand < mutationRate
- mutationIdx = randi(N);
- newPop(i, mutationIdx) = rand * c(mutationIdx);
- newPop(i, :) = normalizeSum(newPop(i, :), V);
- end
- end
-
- % Replacement
- pop = newPop;
- end
-
- % Results
- bestSolution = pop(1, :);
- disp('Best Solution [veh/min]:');
- disp(bestSolution);
- disp(['Best Objective Value: ', num2str(bestFitness(end)), ' [min]']);
-
- figure('Name', 'Time over generations', 'NumberTitle', 'off');
- set(gcf, 'Position', [100, 100, 960, 640]); % Set the figure size
- plot(1:maxGen, bestFitness, '-b', 'LineWidth', 1);
-
- % Customize the plot
- title(['Population = ', num2str(popSize), ' - Mutation = ', num2str(mutationRate)], 'Interpreter', 'latex', 'FontSize', 16); % Title of the plot
- xlabel('Generations') ;
- ylabel('T_{total}');
-
- % save the figure
- print(gcf, ['figures/constV_pop_', num2str(popSize), 'mut_', num2str(mutationRate), '.png'], '-dpng', '-r300');
-
-
- % Fitness Function
- function T_total = fitnessFunction(x, t, a, c, V, travelTime)
- if abs(sum(x) - V) > 1e-6 || any(x < 0) || any(x > c)
- T_total = inf; % Infeasible solutions
- return;
- end
-
- T = arrayfun(@(xi, ti, ai, ci) travelTime(xi, ti, ai, ci), x, t, a, c); % Apply function to all elements
- T_total = sum(T .* x); % Total traversal time
- end
|