THMMY's "Optimization Techniques" course assignments.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

257 lines
26 KiB

  1. %
  2. % Optimization Techniques Work 2 report
  3. %
  4. % authors:
  5. % Χρήστος Χουτουρίδης ΑΕΜ 8997
  6. % cchoutou@ece.auth.gr
  7. \documentclass[a4paper, 11pt]{AUTHReport}
  8. % Document configuration
  9. \AuthorName{Χρήστος Χουτουρίδης}
  10. \AuthorMail{cchoutou@ece.auth.gr}
  11. \AuthorAEM{8997}
  12. % \CoAuthorName{CoAuthor Name}
  13. % \CoAuthorMail{CoAuthor Mail}
  14. % \CoAuthorAEM{AEM}
  15. % \WorkGroup{Ομάδα Χ}
  16. \DocTitle{1η Εργαστηριακή Άσκηση}
  17. \DocSubTitle{Ελαχιστοποίηση συναρτήσεων πολλών μεταβλητών χωρίς περιορισμούς με χρήση παραγώγων}
  18. \Department{Τμήμα ΗΜΜΥ. Τομέας Ηλεκτρονικής}
  19. \ClassName{Τεχνικές Βελτιστοποίησης}
  20. \InstructorName{Γ. Ροβιθάκης}
  21. \InstructorMail{rovithak@auth.gr}
  22. \CurrentDate{\today}
  23. \usepackage{capt-of}
  24. \usepackage{enumitem}
  25. \usepackage{tabularx}
  26. \usepackage{array}
  27. \usepackage{amssymb}
  28. \usepackage{amsfonts}
  29. \usepackage{amsmath}
  30. \usepackage{float}
  31. \begin{document}
  32. \setlist[itemize]{topsep=0pt, partopsep=0pt, itemsep=3pt, parsep=3pt}
  33. \InsertTitle
  34. %\tableofcontents
  35. \sloppy
  36. \section{Εισαγωγή}
  37. Η παρούσα εργασία αφορά το πρόβλημα της ελαχιστοποίησης μιας δοσμένης συνάρτησης πολλών μεταβλητών $f: \mathbb{R}^n \rightarrow \mathbb{R}$ χωρίς περιορισμούς.
  38. Για το σκοπό αυτό κάνουμε χρήση τριών μεθόδων.
  39. Της μεθόδου μέγιστης καθόδου (Steepest Descent), της μεθόδου Newton, και της Levenberg-Marquardt.
  40. Ακόμα για κάθε μία από αυτές θα υλοποιήσουμε τρεις διαφορετικές τεχνικές υπολογισμού βήματος.
  41. \section{Παραδοτέα}
  42. Τα παραδοτέα της εργασίας αποτελούνται από:
  43. \begin{itemize}
  44. \item Την παρούσα αναφορά.
  45. \item Τον κατάλογο \textbf{scripts/}, που περιέχει τον κώδικα της MATLAB.
  46. \item Το \href{https://git.hoo2.net/hoo2/OptimizationTechniques/src/branch/master/Work2}{σύνδεσμο} με το αποθετήριο που περιέχει όλο το project με τον κώδικα της MATLAB, της αναφοράς και τα παραδοτέα.
  47. \end{itemize}
  48. \section{Προγραμματιστική προσέγγιση}
  49. Για τον προγραμματισμό και εκτέλεση των μεθόδων της παρούσας εργασίας έγινε χρήση της MATLAB.
  50. Στον κατάλογο \textbf{scripts}, περιέχονται όλες οι μέθοδοι και οι τεχνικές υπολογισμού βημάτων με τη μορφή συναρτήσεων καθώς και scripts που τις καλούν.
  51. Για κάθε μία μέθοδο (ένα θέμα της εργασίας), υπάρχει το αντίστοιχο script που περιέχει τους υπολογισμούς, τις κλήσεις των μεθόδων και τη δημιουργία των διαγραμμάτων.
  52. Για το πρώτο θέμα το αρχείο Script\_1\_Plots.m για το δεύτερο το Script\_2\_Steepest\_descent.m και ούτω καθεξής.
  53. Στην παρούσα εργασία η υλοποίηση του κώδικα ακολουθεί την τεχνική της προηγούμενης εργασίας και “ομαδοποιεί” αρκετές λειτουργίες.
  54. Πιο συγκεκριμένα.
  55. \subsection{Κλήση μεθόδων επιλογής βήματος $\gamma_k$}
  56. \label{subsec:polymorphic-calls}
  57. Δεδομένου ότι οι μέθοδοι θα πρέπει να καλεστούν και εκτελεστούν με παραπάνω από μία τεχνική επιλογής βήματος $\gamma_k$, δημιουργήσαμε εσωτερικά της κάθε μεθόδου ένα κοινό interface για τις μεθόδους επιλογής βήματος.
  58. Αυτό έχει τη μορφή: \textit{\textbf{gamma\_<method>(f, dk, xk)}}, όπου το \textbf{f} είναι η αντικειμενική συνάρτηση, \textbf{dk} η τιμή της συνάρτησης κλίσης στο xk και \textbf{xk} το σημείο ενδιαφέροντος.
  59. Για την κάθε μία από αυτές δημιουργήσαμε ξεχωριστή συνάρτηση που υλοποιεί το παραπάνω interface.
  60. Μία για σταθερό βήμα, μία για επιλογή βήματος που ελαχιστοποιεί την $f(x_k + \gamma_k d_k)$ και μία με τη μέθοδο Armijo.
  61. Για την επιλογή και κλήση των μεθόδων επιλογής βήματος εισαγάγαμε μία νέα παράμετρο string που χρησιμοποιείται ως enumerator και με βάση αυτή γίνεται η τελική επιλογή.
  62. Έτσι για παράδειγμα η κλήση \textit{method\_newtown(f, gradf, [0, 0], 0.001, 1000, 'armijo')} υλοποιεί τη μέθοδο newton χρησιμοποιώντας τη μέθοδο Armijo για επιλογή βήματος ενώ η \textit{method\_newtown(f, gradf, [0, 0], 0.001, 1000, 'minimized')}, χρησιμοποιεί βήμα που ελαχιστοποιεί την $f(x_k + \gamma_k d_k)$.
  63. \subsection{Symbolic expression functions}
  64. Μία ακόμη προγραμματιστική τεχνική που ακολουθήθηκε είναι η χρήση \textbf{symbolic expression} για την αναπαράσταση των διαφορετικών αντικειμενικών συναρτήσεων.
  65. Ο λόγος που επιλέχθηκε είναι η \textbf{δυνατότητα εξαγωγής ενός symbolic expression που αναπαριστά την κλίση $\nabla f$ και τον Εσσιανό $\nabla^2f$ μιας συνάρτησης} από την MATLAB, κάνοντας χρήση των εντολών \textit{gradient()} και \textit{hessian()}.
  66. Αν αντίθετα χρησιμοποιούσαμε απλές συναρτήσεις, πολυώνυμα ή lambdas για την αναπαράσταση των αντικειμενικών συναρτήσεων, τότε για τον υπολογισμό της κλίσης και του Εσσιανού θα έπρεπε:
  67. \begin{itemize}
  68. \item Είτε να υπολογίζαμε αριθμητικά τις παραγώγους gradient και hessian μέσα στις μεθόδους, κάτι που θα εισήγαγε \textit{\textbf{αχρείαστο αριθμητικό σφάλμα}}.
  69. \item Είτε να κάναμε χρήση δύο επιπλέων συναρτήσεων (ή πολυωνύμων) για την αναπαράσταση τους, κάτι που ουσιαστικά θα δημιουργούσε \textit{\textbf{πλεονασμό πληροφορίας εισόδου}} και άρα μεγαλύτερη πιθανότητα να κάνουμε λάθος.
  70. \end{itemize}
  71. Η αναπαράσταση όμως με χρήση symbolic expression είναι πιο “βαριά” όταν χρειάζεται να υπολογίσουμε την τιμή μιας συνάρτησης σε κάποιο σημείο (subs(expr, number)).
  72. Αυτό είναι κάτι που χρειάζεται εκτενώς στον κώδικά μας.
  73. Για το λόγο αυτό, ενώ η συνάρτηση δίνεται ως symbolic expression, μέσω αυτής υπολογίζονται αυτόματα η κλίση, ο Εσσιανός αλλά και οι “κανονικές” συναρτήσεις MATLAB που τις υλοποιούν.
  74. Έτσι έχουμε την ακριβή αναπαράσταση της κλίσης και του Εσσιανού ως συναρτήσεις χωρίς να πληρώνουμε το κόστος της subs().
  75. \section{Απεικόνιση της συνάρτησης}
  76. Η συνάρτηση με την οποία ασχολούμαστε στην παρούσα εργασία είναι η:
  77. \boldmath
  78. \begin{equation}
  79. f(x,y) = x^5 \cdot e^{-x^2 - y^2}
  80. \end{equation}
  81. \label{eq:ObjectiveFunction}
  82. \unboldmath
  83. Στο παρακάτω σχήμα \ref{fig:plot3dFunction} φαίνεται η τρισδιάστατη απεικόνιση της συνάρτησης.
  84. \InsertFigure{!h}{0.8}{fig:plot3dFunction}{../scripts/figures/FunctionPlot.png}{Γραφική παράσταση της f}
  85. Από το σχήμα μπορούμε πολύ εύκολα να διακρίνουμε ότι η συνάρτηση έχει ένα ευκρινές μέγιστο και ένα ελάχιστο στο διάστημα $x,y \in [-3, 3]$.
  86. Για να πάρουμε μια καλύτερη αίσθηση για το που βρίσκονται αυτά τα τοπικά ακρότατα, παρακάτω παραθέτουμε ένα γράφημα με τις ισοβαρείς καμπύλες της $f$.
  87. \InsertFigure{H}{0.8}{fig:plotContour}{../scripts/figures/FunctionContour.png}{Ισοβαρείς της f}
  88. Από το παραπάνω σχήμα \ref{fig:plotContour} φαίνεται ότι το ελάχιστο της f βρίσκεται στο αρνητικό ημιεπίπεδο των χ, κοντά στο $y = 0$
  89. \par
  90. Τα διαγράμματα για τη μέθοδο δημιουργούνται εκτελώντας το αρχείο \textbf{Script\_1\_Plots.m}
  91. \section{Τεχνικές υπολογισμού βήματος}
  92. Πριν προχωρήσουμε στα επόμενα θέματα της εργασίας και στην ανάλυση των μεθόδων υπολογισμού του ελάχιστου, θέλουμε να αναφερθούμε στις διαφορετικές τεχνικές επιλογής βήματος $\gamma_k$ και ειδικότερα για αυτή της ελαχιστοποίησης της $f(x_k + \gamma_k d_k)$ και την Armijo.
  93. \subsection{Ελαχιστοποίηση της $f(x_k + \gamma_k d_k)$}
  94. Η μέθοδος αυτή αναζητά την τιμή $\gamma_k$ που ελαχιστοποιεί την τιμή της συνάρτησης κατά μήκος της κατεύθυνσης $d_k$.
  95. Δηλαδή, λύνουμε το μονοδιάστατο πρόβλημα:
  96. \boldmath
  97. \[\displaystyle \min{\gamma_k} f(x_k + \gamma_k d_k) \]
  98. Η κατεύθυνση $d_k$ μπορεί να είναι:
  99. \begin{itemize}
  100. \item Η αρνητική κλίση $-\nabla f(x_k)$ (Steepest Descent).
  101. \item Η Newton direction $-{H_k}^{-1} \nabla f(x_k)$ (Newton και Levenberg-Marquardt).
  102. \end{itemize}
  103. \unboldmath
  104. Πλεονεκτήματα της μεθόδου είναι η \textbf{ακρίβεια}, καθώς το βήμα $\gamma_k$ υπολογίζεται με βέλτιστο τρόπο για τη συγκεκριμένη κατεύθυνση και η \textbf{γρήγορη σύγκλιση}, ειδικά σε προβλήματα όπου η $f(x)$ είναι καμπυλωτή με $\gamma_k$ επακριβώς ορισμένο.
  105. Στα μειονεκτήματα μπορούμε να αναφέρουμε το \textbf{υπολογιστικό κόστος}, καθώς ο υπολογισμός του $\gamma_k$ απαιτεί πολλαπλές αξιολογήσεις της $f(x)$.
  106. \subsection{Armijo rule}
  107. Η Armijo rule είναι μια προσαρμοστική τεχνική που επιλέγει το $\gamma_k$ για να εξασφαλίσει επαρκή μείωση της συνάρτησης.
  108. Η βασική ιδέα είναι ότι η συνάρτηση πρέπει να μειώνεται "αρκετά" σε κάθε βήμα, χωρίς να χρειάζεται να υπολογίζεται το ακριβές ελάχιστο.
  109. Η συνθήκη του Armijo είναι:
  110. \boldmath
  111. \[ f(x_k + \gamma_k d_k) \leq f(x_k) + \sigma\gamma_k {d_k}^T*\nabla f(x_k) \]
  112. Όπου $\sigma \in (0, 0.1)$ είναι μια σταθερά (τυπικά $\sigma = 0.1$) και $\gamma_k$ αρχικά να ορίζεται ως 1 και να μειώνεται προοδευτικά (π.χ., $\gamma_k = \beta \cdot \gamma_k$) έως ότου ικανοποιηθεί η συνθήκη.
  113. \unboldmath
  114. \par
  115. Πλεονεκτήματα της μεθόδου είναι η \textbf{σταθερότητα}, καθώς αποτρέπει πολύ μεγάλα βήματα που μπορεί να αυξήσουν την τιμή της $f(x)$, αλλά και η \textbf{ανθεκτικότητα}, καθώς λειτουργεί καλά ακόμα και όταν η $f(x)$ δεν συμπεριφέρεται πολύ καλά.
  116. Στα μειονεκτήματα μπορούμε να αναφέρουμε την \textbf{εξάρτησή της από τις παραμέτρους} \boldmath $\sigma$ και $\beta$\unboldmath, μια κακή επιλογή των οποίων μπορεί να οδηγήσει σε αργή σύγκλιση.
  117. \section{Μέθοδος Μέγιστης Καθόδου - Steepest Descent}
  118. Η πρώτη μέθοδος που χρησιμοποιούμε στην εργασία (Θέμα 2), είναι η μέθοδος μέγιστης καθόδου.
  119. Είναι μια μέθοδος πρώτης τάξης που χρησιμοποιεί την κατεύθυνση της αρνητικής κλίσης $\nabla f(x,y)$ της $f$ ως κατεύθυνση καθόδου.
  120. Η μέθοδος θεωρείται βασική και συχνά χρησιμοποιείται ως εισαγωγή στις μεθόδους βελτιστοποίησης.
  121. \par
  122. Η μέθοδος επιλέγει την κατεύθυνση $d_k = -\nabla f(x_k)$, η οποία είναι η κατεύθυνση της μέγιστης τοπικής μείωσης της συνάρτησης.
  123. Στη συνέχεια, υπολογίζεται το βήμα $\gamma_k$​ για να βρεθεί το επόμενο σημείο $x_{k+1} = x_k + \gamma_k d_k$.
  124. Για να χρησιμοποιήσουμε τη μέθοδο, η συνάρτηση $f$ \textbf{πρέπει να είναι συνεχής και διαφορίσιμη} και η κλίση $\nabla f$ να είναι υπολογίσιμη.
  125. Επίσης για την εφαρμογή της μεθόδου το αρχικό σημείο θα πρέπει να \textbf{μην είναι ακρότατο} της $f$, δηλαδή \boldmath$\nabla f(x_0) \neq 0$\unboldmath.
  126. \par
  127. Όλοι οι υπολογισμοί και τα διαγράμματα για τη μέθοδο βρίσκονται στο αρχείο \textbf{Script\_2\_Steepest\_descent.m}
  128. \subsection{Σημείο εκκίνησης (0,0)}
  129. Για το σημείο (0, 0) η κλίση της $f$ είναι: $\nabla f(0,0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, με αποτέλεσμα η μέθοδος να μην μπορεί να εφαρμοστεί για κανένα τρόπο υπολογισμού βήματος.
  130. \subsection{Σημείο εκκίνησης (-1,1)}
  131. Για το σημείο (-1, 1) η τιμή της $f$ είναι: $f(-1, 1) = -0.135335$ και το διάνυσμα της κλίσης: $\nabla f(0,0) = \begin{bmatrix} 0.4060 \\ 0.2707 \end{bmatrix}$, επομένως μπορούμε να εφαρμόσουμε τη μέθοδο.
  132. \par
  133. \underline{Σταθερό βήμα} \\
  134. Επιλέγοντας ακρίβεια $\epsilon = 0.0001$, εκτελούμε την μέθοδο \textit{method\_steepest\_descent()} και υπολογίζουμε τον αριθμό επαναλήψεων για διαφορετικές τιμές $\gamma_k$.
  135. \InsertFigure{H}{0.8}{fig:point2ItersOverGamma}{../scripts/figures/StDes_Iter_o_gamma_2.png}{Αριθμός επαναλήψεων για διαφορετικές τιμές $\gamma_k$ [Μέγιστη Κάθοδος].}
  136. Στο παραπάνω σχήμα \ref{fig:point2ItersOverGamma} παρατηρούμε ότι για τιμές του $\gamma_k > 0.61$ η μέθοδος αποκλίνει.
  137. Από την παραπάνω διαδικασία επίσης υπολογίζουμε το $\gamma_k = 0,46768$ για το οποίο η μέθοδος συγκλίνει με τα λιγότερα βήματα.
  138. Στο παρακάτω σχήμα \ref{fig:StDes_fixed_2} αναπαριστούμε την πορεία των σημείων καθώς συγκλίνουν στο ελάχιστο.
  139. \InsertFigure{H}{0.8}{fig:StDes_fixed_2}{../scripts/figures/StDes_fixed_2.png}{Σύγκλιση της μεθόδου Steepest descent [fixed $\gamma_k$].}
  140. \par
  141. \underline{Ελαχιστοποίηση της $f(x_k + \gamma_k d_k$)} \\
  142. Για την ελαχιστοποίηση της $f$, χρησιμοποιήθηκε η bisection από την προηγούμενη εργασία, η οποία τροποποιήθηκε ώστε δέχεται functions και όχι symbolic expressions.
  143. \InsertFigure{H}{0.8}{fig:StDes_minimized_2}{../scripts/figures/StDes_minimized_2.png}{Σύγκλιση της μεθόδου Steepest descent [minimized f].}
  144. Από το γράφημα φαίνεται τόσο ότι η μέθοδος συγκλίνει κοντά στο ελάχιστο γρηγορότερα, όσο και ότι πραγματοποιεί “διορθώσεις πορείας”.
  145. \par
  146. \underline{Armijo rule} \\
  147. Για τη μέθοδο η βασική ιδέα είναι να ξεκινήσει ο αλγόριθμος από ένα μεγάλο $\gamma_k = 1$ και συνεχώς να μειώνεται με βάση τον κανόνα Armijo.
  148. Μετά από ένα tuning των παραμέτρων της μεθόδου καταλήξαμε στα $\beta=0.4, \sigma=0.1$
  149. \InsertFigure{H}{0.8}{fig:StDes_armijo_2}{../scripts/figures/StDes_armijo_2.png}{Σύγκλιση της μεθόδου Steepest descent [armijo rule].}
  150. \subsection{Σημείο εκκίνησης (1,-1)}
  151. Για το σημείο (1, -1) η τιμή της $f$ είναι: $f(1, -1) = -0.135335$ και το διάνυσμα της κλίσης: $\nabla f(0,0) = \begin{bmatrix} 0.4060 \\ 0.2707 \end{bmatrix}$, επομένως μπορούμε να εφαρμόσουμε τη μέθοδο.
  152. \par
  153. \underline{Σταθερό βήμα} \\
  154. Για σταθερό βήμα εκτελέσαμε διαδοχικά τη μέθοδο \textit{method\_steepest\_descent()} για να υπολογίσουμε τον αριθμό επαναλήψεων για διαφορετικές τιμές $\gamma_k$, όμως σε καμία τιμή ο αλγόριθμος δεν συγκλίνει.
  155. Ακόμα και για μεγάλες τιμές του $\gamma_k$, ο αλγόριθμος εγκλωβίζεται στο δεξιό ημιεπίπεδο.
  156. \InsertFigure{H}{0.8}{fig:StDes_fixed_3}{../scripts/figures/StDes_fixed_3.png}{Μη σύγκλιση της μεθόδου Steepest descent [Fixed step].}
  157. \par
  158. \underline{Ελαχιστοποίηση της $f(x_k + \gamma_k d_k$)} \\
  159. \InsertFigure{H}{0.8}{fig:StDes_minimized_3}{../scripts/figures/StDes_minimized_3.png}{Σύγκλιση της μεθόδου Steepest descent [minimized f].}
  160. Από το γράφημα φαίνεται ότι η μέθοδος συγκλίνει, καταφέρνοντας να περάσει την περιοχή με μηδενικές κλίσεις κοντά στον άξονα των $\psi$.
  161. \par
  162. \underline{Armijo rule} \\
  163. \InsertFigure{H}{0.8}{fig:StDes_armijo_3}{../scripts/figures/StDes_armijo_3.png}{Μη σύγκλιση της μεθόδου Steepest descent [armijo rule].}
  164. Αντίθετα η μέθοδος armijo δεν συγκλίνει, καθώς εγκλωβίζεται στο δεξιό ημιεπίπεδο.
  165. \section{Μέθοδος Newton}
  166. Η δεύτερη μέθοδος που χρησιμοποιούμε στην εργασία (Θέμα 3), είναι η μέθοδος Newton.
  167. Η μέθοδος χρησιμοποιεί πληροφορίες δεύτερης τάξης (Hessian) για τη βελτίωση της κατεύθυνσης καθόδου.
  168. Αν η συνάρτηση είναι τετραγωνική, η μέθοδος συγκλίνει σε ένα βήμα.
  169. Η μέθοδος ορίζει την κατεύθυνση
  170. \boldmath\[d_k = -{H_k}^{-1}\nabla f(x_k)\]\unboldmath
  171. Όπου $H_k$ είναι ο Εσσιανός πίνακας της $f$ στο $x_k$.
  172. Το επόμενο σημείο υπολογίζεται ως
  173. \boldmath\[x_{k+1} = x_k + \gamma_k d_k\]\unboldmath
  174. Με κατάλληλο υπολογισμό του βήματος.
  175. Για να λειτουργήσει η μέθοδος η $f$ πρέπει να είναι \textbf{δύο φορές διαφορίσιμη} και ο Εσσιανός \boldmath$H_k$\unboldmath να είναι \textbf{θετικά ορισμένος και αντιστρέψιμος}.
  176. \par
  177. Στα πλεονεκτήματα της μεθόδου είναι η \textbf{ταχύτερη σύγκλιση} από την Steepest Descent για κυρτές συναρτήσεις και το γεγονός ότι εκμεταλλεύεται την \textbf{πληροφορία καμπυλότητας} της συνάρτησης.
  178. Όμως είναι υπολογιστικά δαπανηρή και δεν είναι ανθεκτική σε μη κυρτές συναρτήσεις ή σε περιπτώσεις όπου ο Εσσιανός είναι κακώς ορισμένος.
  179. Όλοι οι υπολογισμοί για τη μέθοδο βρίσκονται στο αρχείο \textbf{Script\_3\_Newton.m}
  180. \subsection{Σημείο εκκίνησης (0,0)}
  181. Για το σημείο $x_k = (0, 0)$ η κλίση της $f$ είναι: $\nabla f(x_k) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ και ο εσσιανός $H(x_k) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ με αποτέλεσμα η μέθοδος και εδώ να μην μπορεί να εφαρμοστεί για κανένα τρόπο υπολογισμού βήματος.
  182. \subsection{Σημείο εκκίνησης (-1,1)}
  183. Για το σημείο $x_k = (-1, 1)$ η κλίση της $f$ είναι: $\nabla f(x_k) = \begin{bmatrix} 0.406 \\ 0.270 \end{bmatrix}$ και ο εσσιανός $H(x_k) = \begin{bmatrix} -0.270 & -0.812 \\ -0.812 & -0.270 \end{bmatrix}$ με ιδιοτιμές $\lambda = \begin{bmatrix} -1.082 \\ 0.541 \end{bmatrix}$.
  184. Από τα παραπάνω προκύπτει πως ο Εσσιανός είναι αόριστος και άρα δεν μπορεί να εφαρμοστεί η μέθοδος, για κανένα τρόπο υπολογισμού βήματος.
  185. \subsection{Σημείο εκκίνησης (1,-1)}
  186. Για το σημείο $x_k = (1, -1)$ η κλίση της $f$ είναι: $\nabla f(x_k) = \begin{bmatrix} 0.406 \\ 0.270 \end{bmatrix}$ και ο εσσιανός $H(x_k) = \begin{bmatrix} 0.270 & 0.812 \\ 0.812 & 0.270 \end{bmatrix}$ με ιδιοτιμές $\lambda = \begin{bmatrix} -0.541 \\ 1.082 \end{bmatrix}$.
  187. Και εδώ, από τα παραπάνω προκύπτει πως ο Εσσιανός είναι αόριστος και άρα δεν μπορεί να εφαρμοστεί η μέθοδος, για κανένα τρόπο υπολογισμού βήματος.
  188. \section{Μέθοδος Levenberg-Marquardt}
  189. Η τελευταία μέθοδος που χρησιμοποιούμε στην εργασία (Θέμα 4), είναι η μέθοδος Levenberg-Marquardt.
  190. Πρόκειται για μια τροποποιημένη έκδοση της μεθόδου Newton, η οποία εισάγει έναν παράγοντα απόσβεσης για τη σταθεροποίηση όταν ο εσσιανός δεν είναι θετικά ορισμένος.
  191. Για το λόγο αυτό χρησιμοποιεί ένας προσαρμοσμένος εσσιανός $H_k' = H_k + \mu_k I$, όπου $\mu_k > 0$ ένας παράγοντας απόσβεσης.
  192. Για μεγάλες τιμές του $\mu_k$ η μέθοδος συμπεριφέρεται σαν Gradient Descent.
  193. %Απαιτήσεις:
  194. %Η f(x)f(x) πρέπει να είναι δύο φορές διαφορίσιμη.
  195. %Υπολογισμός του λλ απαιτεί προσεκτική επιλογή παραμέτρων.
  196. %Περιορισμοί:
  197. %Η απόδοση εξαρτάται από την επιλογή του αρχικού λλ.
  198. %Μπορεί να παρουσιάσει αργή σύγκλιση σε προβλήματα χωρίς κυρτότητα.
  199. %Πλεονεκτήματα:
  200. %Σταθερή ακόμη και για κακώς ορισμένα Hessians.
  201. %Λειτουργεί καλά σε προβλήματα που συνδυάζουν γραμμικές και μη γραμμικές εξαρτήσεις.
  202. %Μειονεκτήματα:
  203. %Υψηλότερο υπολογιστικό κόστος σε σχέση με το Steepest Descent.
  204. Όλοι οι υπολογισμοί για τη μέθοδο βρίσκονται στο αρχείο \textbf{Script\_4\_LevMar.m}
  205. \section{Σύγκριση των μεθόδων}
  206. Εκτελώντας όλους του αλγόριθμους για τα ίδια δεδομένα, \textbf{για τον αριθμό επαναλήψεων} έχουμε: \\
  207. \begin{itemize}
  208. \item ...
  209. \end{itemize}
  210. \section{Συμπεράσματα}
  211. Οι μέθοδοι της παρούσας εργασίας αποτελούν βασικές τεχνικές για την εύρεση του τοπικού ελαχίστου ...
  212. \end{document}