Quellcode durchsuchen

Switch to a polymorphic method invokation

tags/v1.0
Ursprung
Commit
634f90b25b
31 geänderte Dateien mit 441 neuen und 303 gelöschten Zeilen
  1. +17
    -16
      Work 1/scripts/GivenEnv.m
  2. +37
    -0
      Work 1/scripts/Work1.m
  3. +0
    -48
      Work 1/scripts/bisection/bisection_interval.m
  4. +0
    -41
      Work 1/scripts/bisection/bisection_over_epsilon.m
  5. +0
    -44
      Work 1/scripts/bisection/bisection_over_lambda.m
  6. +62
    -0
      Work 1/scripts/bisection_over_epsilon.m
  7. BIN
      Work 1/scripts/figures/interval_over_iterations_min_bisection_der_fun1.png
  8. BIN
      Work 1/scripts/figures/interval_over_iterations_min_bisection_der_fun2.png
  9. BIN
      Work 1/scripts/figures/interval_over_iterations_min_bisection_der_fun3.png
  10. BIN
      Work 1/scripts/figures/interval_over_iterations_min_bisection_fun1.png
  11. BIN
      Work 1/scripts/figures/interval_over_iterations_min_bisection_fun2.png
  12. BIN
      Work 1/scripts/figures/interval_over_iterations_min_bisection_fun3.png
  13. BIN
      Work 1/scripts/figures/interval_over_iterations_min_fibonacci_fun1.png
  14. BIN
      Work 1/scripts/figures/interval_over_iterations_min_fibonacci_fun2.png
  15. BIN
      Work 1/scripts/figures/interval_over_iterations_min_fibonacci_fun3.png
  16. BIN
      Work 1/scripts/figures/interval_over_iterations_min_golden_section_fun1.png
  17. BIN
      Work 1/scripts/figures/interval_over_iterations_min_golden_section_fun2.png
  18. BIN
      Work 1/scripts/figures/interval_over_iterations_min_golden_section_fun3.png
  19. BIN
      Work 1/scripts/figures/iter_over_epsilon_min_bisection.png
  20. BIN
      Work 1/scripts/figures/iter_over_lambda_min_bisection.png
  21. BIN
      Work 1/scripts/figures/iter_over_lambda_min_bisection_der.png
  22. BIN
      Work 1/scripts/figures/iter_over_lambda_min_fibonacci.png
  23. BIN
      Work 1/scripts/figures/iter_over_lambda_min_golden_section.png
  24. +0
    -45
      Work 1/scripts/golden_section/golden_section_interval.m
  25. +0
    -39
      Work 1/scripts/golden_section/golden_section_over_lambda.m
  26. +82
    -0
      Work 1/scripts/interval_over_iterations.m
  27. +83
    -0
      Work 1/scripts/iterations_over_lambda.m
  28. +34
    -33
      Work 1/scripts/min_bisection.m
  29. +36
    -0
      Work 1/scripts/min_bisection_der.m
  30. +54
    -0
      Work 1/scripts/min_fibonacci.m
  31. +36
    -37
      Work 1/scripts/min_golden_section.m

+ 17
- 16
Work 1/scripts/GivenEnv.m Datei anzeigen

@@ -1,16 +1,17 @@
%
% Select the given interval: [-1,3]
a_0 = -1;
b_0 = 3;

% Setup the functions under test
f_1 = @(x) (x-2)^2 + x*log(x+3);
f_2 = @(x) exp(-2*x) + (x-2)^2;
f_3 = @(x) exp(x)*(x^3 - 1) + (x-1)*sin(x);
funs = {f_1, f_2, f_3};

% Setup the function titles
title_f1 = "$f_1(x) = (x - 2)^2 + x \cdot \ln(x + 3)$";
title_f2 = "$f_2(x) = e^{-2x} + (x - 2)^2$";
title_f3 = "$f_3(x) = e^x \cdot (x^3 - 1) + (x - 1) \cdot \sin(x)$";
titles = [title_f1; title_f2; title_f3];
%
% Select the given interval: [-1,3]
a_0 = -1;
b_0 = 3;
% Setup the functions under test
syms x;
f_1 = (x-2)^2 + x*log(x+3);
f_2 = exp(-2*x) + (x-2)^2;
f_3 = exp(x)*(x^3 - 1) + (x-1)*sin(x);
funs = [f_1; f_2; f_3];
% Setup the function titles
title_f1 = "$f_1(x) = (x - 2)^2 + x \cdot \ln(x + 3)$";
title_f2 = "$f_2(x) = e^{-2x} + (x - 2)^2$";
title_f3 = "$f_3(x) = e^x \cdot (x^3 - 1) + (x - 1) \cdot \sin(x)$";
titles = [title_f1; title_f2; title_f3];

+ 37
- 0
Work 1/scripts/Work1.m Datei anzeigen

@@ -0,0 +1,37 @@
%
%
%
%
%
%


disp (" ");
disp (" ");
disp ('1. Number of iterations for different epsilon values for min_bisection');
disp ('----');
bisection_over_epsilon;

methods = {
@min_bisection;
@min_golden_section;
@min_fibonacci;
@min_bisection_der
};

disp (" ");
disp (" ");
disp ('2. Number of iterations for different lambda values');
disp ('----');
for i = 1:length(methods)
iterations_over_lambda(methods{i});
end


disp (" ");
disp (" ");
disp ('3. [a, b] interval convergence');
disp ('----');
for i = 1:length(methods)
interval_over_iterations(methods{i});
end

+ 0
- 48
Work 1/scripts/bisection/bisection_interval.m Datei anzeigen

@@ -1,48 +0,0 @@
%
% Keeping epsilon fixed, plot the [a,b] interval over the iterations for
% different lambda values (min, mid, max))
%


% Clear workspace and load the functions and interval
clear
addpath('..');
GivenEnv;

% * epsilon: e = 0.001
% * lambda: l > 2e = 0.001
% * dl: A small step away from 2e
% dl = 0.0001
% * lambda_max: 0.1
% * N: 3 lambda values

N = 3;
epsilon = 0.001;
dl = 0.0001;
lambda_max= 0.1;
lambda = linspace(2*epsilon + dl, lambda_max, N);
k = zeros(1, N); % preallocate k


%
% * Call the bisection method for each lambda value for each function
% * Plot the [a,b] interval over iterations for each lambda for each function
%

for i = 1:length(funs)
figure;
for j = 1:N
[a, b, k(j)] = bisection(funs{i}, a_0, b_0, epsilon, lambda(j));
subplot(length(funs), 1, j)
plot(1:length(a), a, 'ob')
hold on
plot(1:length(b), b, '*r')
if j == 1
title(titles(i), 'Interpreter', 'latex')
end
xlabel("Iterations @lambda=" + lambda(j))
ylabel('[a_k, b_k]')
end
end


+ 0
- 41
Work 1/scripts/bisection/bisection_over_epsilon.m Datei anzeigen

@@ -1,41 +0,0 @@
%
% Keeping lambda (accuracy) fixed, test the iteration needed for different
% epsilon values.
%


% Clear workspace and load the functions and interval
clear
addpath('..');
GivenEnv;

% * lambda = 0.01
% * epsilon: e < lambda/2 = 0.005
% * de: A small step away from zero and lambda/2
% de = 0.0001
% * N: 50 points

N = 50;
lambda = 0.01;
de = 0.0001;
epsilon = linspace(de, (lambda/2)-de, N);
k = zeros(1,N); % preallocate k


%
% * Call the bisection method for each epsilon value for each function and
% keep the number of iterations needed.
% * Plot the iterations k(epsilon) for each function
%
for i = 1:length(funs)
for j = 1:N
[a, b, k(j)] = bisection(funs{i}, a_0, b_0, epsilon(j), lambda);
end
subplot(1, length(funs), i)
plot(epsilon, k, '-b', 'LineWidth', 1.0)
title(titles(i), 'Interpreter', 'latex')
xlabel('epsilon')
ylabel('Iterations')
end


+ 0
- 44
Work 1/scripts/bisection/bisection_over_lambda.m Datei anzeigen

@@ -1,44 +0,0 @@
%
% Keeping epsilon fixed, test the iteration needed for different lambda
% values.
%


% Clear workspace and load the functions and interval
clear
addpath('..');
GivenEnv;

% * epsilon: e = 0.001
% * lambda: l > 2e = 0.001
% * dl: A small step away from 2e
% dl = 0.0001
% * lambda_max: 0.1
% * N: 50 points

N = 50;
epsilon = 0.001;
dl = 0.0001;
lambda_max= 0.1;
lambda = linspace(2*epsilon + dl, lambda_max, N);
k = zeros(1, N); % preallocate k


%
% * Call the bisection method for each lambda value for each function and
% keep the number of iterations needed.
% * Plot the iterations k(lambda) for each function
%

for i = 1:length(funs)
for j = 1:N
[a, b, k(j)] = bisection(funs{i}, a_0, b_0, epsilon, lambda(j));
end
subplot(1, length(funs), i)
plot(lambda, k, '-b', 'LineWidth', 1.0)
title(titles(i), 'Interpreter', 'latex')
xlabel('lambda')
ylabel('Iterations')
end


+ 62
- 0
Work 1/scripts/bisection_over_epsilon.m Datei anzeigen

@@ -0,0 +1,62 @@
%
% Keeping lambda (accuracy) fixed, test the iteration needed for different
% epsilon values.
%
% Load the functions and interval
GivenEnv;
fig_dir = 'figures';
if ~exist(fig_dir, 'dir')
mkdir(fig_dir);
end
% Setup
% ========================
% lambda = 0.01
% epsilon: e < lambda/2 = 0.005
% de: A small step away from zero and lambda/2
% de = 0.0001
% N: 50 points (50 epsilon values)
N = 50;
lambda = 0.01;
de = 0.0001;
epsilon = linspace(de, (lambda/2)-de, N);
k = zeros(1,N); % preallocate k
%
% Call the min_bisection method for each epsilon value for each
% function and keep the number of iterations needed.
% Then plot and save the # of iterations k(epsilon) for each function.
%
figure('Name', 'iterations_over_epsilon_min_bisection', 'NumberTitle', 'off');
set(gcf, 'Position', [100, 100, 1280, 600]); % Set the figure size to HD
for i = 1:length(funs)
for j = 1:N
[a, b, k(j)] = min_bisection(funs(i), a_0, b_0, epsilon(j), lambda);
end
fprintf('%20s(%34s ): [a, b]= [%f, %f], iterations(min, max)= (%d, %d)\n', ...
"min_bisection", char(funs(i)), a(end), b(end), k(1), k(N) );
subplot(1, length(funs), i)
plot(epsilon, k, '-b', 'LineWidth', 1.0)
title(titles(i), 'Interpreter', 'latex')
xlabel('epsilon')
ylabel('Iterations')
end
%
% Print and save the figures
%
%fig_epsc = fullfile(fig_dir, "iter_over_epsilon_min_bisection" + ".epsc");
fig_png = fullfile(fig_dir, "iter_over_epsilon_min_bisection" + ".png");
%print(gcf, fig_epsc, '-depsc', '-r300');
print(gcf, fig_png, '-dpng', '-r300');

BIN
Work 1/scripts/figures/interval_over_iterations_min_bisection_der_fun1.png Datei anzeigen

Vorher Nachher
Breite: 4031  |  Höhe: 2228  |  Größe: 111 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_bisection_der_fun2.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 111 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_bisection_der_fun3.png Datei anzeigen

Vorher Nachher
Breite: 4031  |  Höhe: 2228  |  Größe: 112 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_bisection_fun1.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 112 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_bisection_fun2.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 111 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_bisection_fun3.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 113 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_fibonacci_fun1.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 119 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_fibonacci_fun2.png Datei anzeigen

Vorher Nachher
Breite: 4031  |  Höhe: 2228  |  Größe: 118 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_fibonacci_fun3.png Datei anzeigen

Vorher Nachher
Breite: 4031  |  Höhe: 2228  |  Größe: 120 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_golden_section_fun1.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 118 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_golden_section_fun2.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 117 KiB

BIN
Work 1/scripts/figures/interval_over_iterations_min_golden_section_fun3.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 2250  |  Größe: 119 KiB

BIN
Work 1/scripts/figures/iter_over_epsilon_min_bisection.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 1875  |  Größe: 68 KiB

BIN
Work 1/scripts/figures/iter_over_lambda_min_bisection.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 1875  |  Größe: 72 KiB

BIN
Work 1/scripts/figures/iter_over_lambda_min_bisection_der.png Datei anzeigen

Vorher Nachher
Breite: 4031  |  Höhe: 1853  |  Größe: 75 KiB

BIN
Work 1/scripts/figures/iter_over_lambda_min_fibonacci.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 1875  |  Größe: 70 KiB

BIN
Work 1/scripts/figures/iter_over_lambda_min_golden_section.png Datei anzeigen

Vorher Nachher
Breite: 4000  |  Höhe: 1875  |  Größe: 70 KiB

+ 0
- 45
Work 1/scripts/golden_section/golden_section_interval.m Datei anzeigen

@@ -1,45 +0,0 @@
%
% Plot the [a,b] interval over the iterations for different lambda
% values (min, mid, max))
%


% Clear workspace and load the functions and interval
clear
addpath('..');
GivenEnv;

% * lambda_min: 0.0001
% * lambda_max: 0.1
% * N: 3 lambda values

N = 3;
lambda_min = 0.0001;
lambda_max = 0.1;
lambda = linspace(lambda_min, lambda_max, N);
k = zeros(1, N); % preallocate k


%
% * Call the golden_sector method for each lambda value for each function and
% keep the number of iterations needed.
% * Plot the [a,b] interval over iterations for each lambda for each function
%

for i = 1:length(funs)
figure;
for j = 1:N
[a, b, k(j)] = golden_section(funs{i}, a_0, b_0, lambda(j));
subplot(length(funs), 1, j)
plot(1:length(a), a, 'ob')
hold on
plot(1:length(b), b, '*r')
if j == 1
title(titles(i), 'Interpreter', 'latex')
end
xlabel("Iterations @lambda=" + lambda(j))
ylabel('[a_k, b_k]')
end
end


+ 0
- 39
Work 1/scripts/golden_section/golden_section_over_lambda.m Datei anzeigen

@@ -1,39 +0,0 @@
%
% Test the iteration needed for different lambda values.
%


% Clear workspace and load the functions and interval
clear
addpath('..');
GivenEnv;

% * lambda_min: 0.0001
% * lambda_max: 0.1
% * N: 50 points

N = 50;
lambda_min = 0.0001;
lambda_max = 0.1;
lambda = linspace(lambda_min, lambda_max, N);
k = zeros(1, N); % preallocate k


%
% * Call the golden_sector method for each lambda value for each function and
% keep the number of iterations needed.
% * Plot the iterations k(lambda) for each function
%

for i = 1:length(funs)
for j = 1:N
[a, b, k(j)] = golden_section(funs{i}, a_0, b_0, lambda(j));
end
subplot(1, length(funs), i)
plot(lambda, k, '-b', 'LineWidth', 1.0)
title(titles(i), 'Interpreter', 'latex')
xlabel('lambda')
ylabel('Iterations')
end


+ 82
- 0
Work 1/scripts/interval_over_iterations.m Datei anzeigen

@@ -0,0 +1,82 @@
function [] = interval_over_iterations(method)
% Plot the [a,b] interval over the iterations for different lambda
% values (min, mid, max))
%
% method: the minimum calculation method
% * bisections
% * golden_section
% * fibonacci
% * bisection_der


% Load the functions and interval
GivenEnv;

fig_dir = 'figures';
if ~exist(fig_dir, 'dir')
mkdir(fig_dir);
end

% Setup
% ========================
%
% We need to test against the same lambda values for all the methods in
% order to compare them. And since epsilon (which is related to lambda)
% was given for bisection method, we base our calculations to that.
%
%
% epsilon: e = 0.001
% lambda: l > 2e =>
% lambda_min: 0.0021
% lambda_max: 0.1
% N: 3 points (3 lambda values min-mid-max)

N = 3;
epsilon = 0.001;
lambda_min = 0.0021;
lambda_max = 0.1;
lambda = linspace(lambda_min, lambda_max, N);
k = zeros(1, N); % preallocate k


%
% Call the minimum calculation method for each lambda value for each
% function and keep the number of iterations needed.
% Then Plot the [a,b] interval over iterations for each lambda for each
% function.
%
% note: In order to use the same method call for all methods, we force a
% common interface for minimum method functions. Thus some arguments
% will not be needed for some methods (epsilon is not needed for
% bisection _der for example).
%

disp(" ");
for i = 1:length(funs)
figure('Name', "interval_over_iterations_" + char(method) + "_fun" + i, 'NumberTitle', 'off');
set(gcf, 'Position', [100, 100, 1280, 720]); % Set the figure size to HD
for j = 1:N
[a, b, k(j)] = method(funs(i), a_0, b_0, epsilon, lambda(j));
fprintf('%20s(%34s ): [a, b]= [%f, %f], @lambda=%f, iterations= %d\n', ...
char(method), char(funs(i)), a(end), b(end), lambda(j), k(j) );
subplot(length(funs), 1, j)
plot(1:length(a), a, 'ob')
hold on
plot(1:length(b), b, '*r')
if j == 1
title(titles(i), 'Interpreter', 'latex')
end
xlabel("Iterations @lambda=" + lambda(j))
ylabel('[a_k, b_k]')
end
% Print and save the figure
%fig_epsc = fullfile(fig_dir, "interval_over_iterations_" + char(method) + "_fun" + i + ".epsc");
fig_png = fullfile(fig_dir, "interval_over_iterations_" + char(method) + "_fun" + i + ".png");

%print(gcf, fig_epsc, '-depsc', '-r300');
print(gcf, fig_png, '-dpng', '-r300');
end


+ 83
- 0
Work 1/scripts/iterations_over_lambda.m Datei anzeigen

@@ -0,0 +1,83 @@
function [] = iterations_over_lambda(method)
% Plot iteration needed for different lambda values.
%
%
% method: the minimum calculation method
% * bisections
% * golden_section
% * fibonacci
% * bisection_der


% Load the functions and interval
GivenEnv;

fig_dir = 'figures';
if ~exist(fig_dir, 'dir')
mkdir(fig_dir);
end

% Setup
% ========================
%
% We need to test against the same lambda values for all the methods in
% order to compare them. And since epsilon (which is related to lambda)
% was given for bisection method, we base our calculations to that.
%
%
% epsilon: e = 0.001
% lambda: l > 2e =>
% lambda_min: 0.0021
% lambda_max: 0.1
% N: 50 points (50 lambda values)

N = 50;
epsilon = 0.001;
lambda_min = 0.0021;
lambda_max = 0.1;
lambda = linspace(lambda_min, lambda_max, N);
k = zeros(1, N); % preallocate k


%
% Call the minimum calculation method for each lambda value for each
% function and keep the number of iterations needed.
% Then plot and save the # of iterations k(lambda) for each function.
%
% note: In order to use the same method call for all methods, we force a
% common interface for minimum method functions. Thus some arguments
% will not be needed for some methods (epsilon is not needed for
% bisection _der for example).
%

figure('Name', "iterations_over_lambda_" + char(method), 'NumberTitle', 'off');
set(gcf, 'Position', [100, 100, 1280, 600]); % Set the figure size to HD

disp(" ");
for i = 1:length(funs)
for j = N:-1:1
[a, b, k(j)] = method(funs(i), a_0, b_0, epsilon, lambda(j));
end

fprintf('%20s(%34s ): [a, b]= [%f, %f], iterations(min, max)= (%d, %d)\n', ...
char(method), char(funs(i)), a(end), b(end), k(N), k(1) );
subplot(1, length(funs), i)
plot(lambda, k, '-b', 'LineWidth', 1.0)
title(titles(i), 'Interpreter', 'latex')
xlabel('lambda')
ylabel('Iterations')
end


%
% Print and save the figures
%
%fig_epsc = fullfile(fig_dir, "iter_over_lambda_" + char(method) + ".epsc");
fig_png = fullfile(fig_dir, "iter_over_lambda_" + char(method) + ".png");

%print(gcf, fig_epsc, '-depsc', '-r300');
print(gcf, fig_png, '-dpng', '-r300');




Work 1/scripts/bisection/bisection.m → Work 1/scripts/min_bisection.m Datei anzeigen

@@ -1,33 +1,34 @@
function [a, b, k] = bisection(fun, alpha, beta, epsilon, lambda)
%
% Detailed explanation goes here
%
%

% Error checking
if 2*epsilon >= lambda || lambda <= 0
error ('Convergence criteria not met')
end

% Init output vectors
a = alpha;
b = beta;

k=1;

while b(k) - a(k) > lambda
% bisect [a,b]
mid = (a(k) + b(k)) / 2;
x_1 = mid - epsilon;
x_2 = mid + epsilon;
% set new search interval
k = k + 1;
if fun(x_1) < fun(x_2)
a(k) = a(k-1);
b(k) = x_2;
else
a(k) = x_1;
b(k) = b(k-1);
end
end
function [a, b, k] = min_bisection(fun_expression, alpha, beta, epsilon, lambda)
%
% Detailed explanation goes here
%
%
% Error checking
if 2*epsilon >= lambda || lambda <= 0
error ('Convergence criteria not met')
end
% Init
a = alpha;
b = beta;
fun = matlabFunction(fun_expression);
k=1;
while b(k) - a(k) > lambda
% bisect [a,b]
mid = (a(k) + b(k)) / 2;
x_1 = mid - epsilon;
x_2 = mid + epsilon;
% set new search interval
k = k + 1;
if fun(x_1) < fun(x_2)
a(k) = a(k-1);
b(k) = x_2;
else
a(k) = x_1;
b(k) = b(k-1);
end
end

+ 36
- 0
Work 1/scripts/min_bisection_der.m Datei anzeigen

@@ -0,0 +1,36 @@
function [a, b, k] = min_bisection_der(fun_expression, alpha, beta, epsilon, lambda)
%
% Detailed explanation goes here
%
%

% Error checking
if lambda <= 0
error ('Convergence criteria not met')
end

% Init output vectors
a = alpha;
b = beta;
dfun = matlabFunction(diff(fun_expression));

k=1;
while b(k) - a(k) > lambda
% bisect [a,b]
x_mid = (a(k) + b(k)) / 2;
% set new search interval
k = k + 1;
df = dfun(x_mid);
if df < 0
a(k) = x_mid;
b(k) = b(k-1);
elseif df > 0
a(k) = a(k-1);
b(k) = x_mid;
else % df == 0
a(k) = x_mid;
b(k) = x_mid;
break;
end
end

+ 54
- 0
Work 1/scripts/min_fibonacci.m Datei anzeigen

@@ -0,0 +1,54 @@
function [a, b, N] = min_fibonacci(fun_expression, alpha, beta, epsilon, lambda)
%
% Use Binet's formula instead of matlab's recursive fibonacci
% implementation
fib = @(n) ( ((1 + sqrt(5))^n - (1 - sqrt(5))^n) / (2^n * sqrt(5)) );
% Error checking
if lambda <= 0 || epsilon <= 0
error ('Convergence criteria not met')
end
% Init variables
a = alpha;
b = beta;
fun = matlabFunction(fun_expression);
% calculate number of iterations
N=0;
while fibonacci(N) < (b(1) - a(1)) / lambda
N = N + 1;
end
% calculate x1, x2 of the first iteration, since the following iteration
% will not require to calculate both
x_1 = a(1) + (fib(N-2) / fib(N)) * (b(1) - a(1));
x_2 = a(1) + (fib(N-1) / fib(N)) * (b(1) - a(1));
% All but the last calculation
for k = 1:N-2
% set new search interval
if fun(x_1) < fun(x_2)
a(k+1) = a(k);
b(k+1) = x_2;
x_2 = x_1;
x_1 = a(k+1) + (fib(N-k-2) / fib(N-k)) * (b(k+1) - a(k+1));
else
a(k+1) = x_1;
b(k+1) = b(k);
x_1 = x_2;
x_2 = a(k+1) + (fib(N-k-1) / fib(N-k)) * (b(k+1) - a(k+1));
end
end
% Last calculation
x_2 = x_1 + epsilon;
if fun(x_1) < fun(x_2)
a(N) = a(N-1);
b(N) = x_1;
else
a(N) = x_1;
b(N) = b(N-1);
end

Work 1/scripts/golden_section/golden_section.m → Work 1/scripts/min_golden_section.m Datei anzeigen

@@ -1,37 +1,36 @@
function [a, b, k] = golden_section(fun, alpha, beta, lambda)
%


% Error checking
if lambda <= 0
error ('Convergence criteria not met')
end

% Init variables
gamma = 0.618;
a = alpha;
b = beta;


% calculate x1, x2 of the first iteration, since the following iteration
% will not require to calculate both
k=1;
x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
x_2 = a(k) + gamma*(b(k) - a(k));

while b(k) - a(k) > lambda
% set new search interval
k = k + 1;
if fun(x_1) < fun(x_2)
a(k) = a(k-1);
b(k) = x_2;
x_2 = x_1;
x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
else
a(k) = x_1;
b(k) = b(k-1);
x_1 = x_2;
x_2 = a(k) + gamma*(b(k) - a(k));
end
end

function [a, b, k] = min_golden_section(fun_expression, alpha, beta, epsilon, lambda)
%
% Error checking
if lambda <= 0
error ('Convergence criteria not met')
end
% Init variables
gamma = 0.618;
a = alpha;
b = beta;
fun = matlabFunction(fun_expression);
% calculate x1, x2 of the first iteration, since the following iteration
% will not require to calculate both
k=1;
x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
x_2 = a(k) + gamma*(b(k) - a(k));
while b(k) - a(k) > lambda
% set new search interval
k = k + 1;
if fun(x_1) < fun(x_2)
a(k) = a(k-1);
b(k) = x_2;
x_2 = x_1;
x_1 = a(k) + (1 - gamma)*(b(k) - a(k));
else
a(k) = x_1;
b(k) = b(k-1);
x_1 = x_2;
x_2 = a(k) + gamma*(b(k) - a(k));
end
end

Laden…
Abbrechen
Speichern