|
|
@@ -0,0 +1,47 @@ |
|
|
|
% |
|
|
|
% Keeping epsilon fixed, test the iteration needed for different lambda |
|
|
|
% values. |
|
|
|
% |
|
|
|
|
|
|
|
|
|
|
|
% Clear workspace and load the functions and region |
|
|
|
clear |
|
|
|
|
|
|
|
funGivenEnv; |
|
|
|
|
|
|
|
% * epsilon: e = 0.001 |
|
|
|
% * lambda: l > 2e = 0.001 |
|
|
|
% * dl: A small step away from 2e |
|
|
|
% dl = 0.0001 |
|
|
|
% * lambda_max: 0.1 |
|
|
|
% * size: 25 points |
|
|
|
|
|
|
|
size = 25; |
|
|
|
epsilon = 0.001; |
|
|
|
dl = 0.0001; |
|
|
|
lambda_max= 0.1; |
|
|
|
lambda = linspace(2*epsilon + dl, lambda_max, size); |
|
|
|
k = zeros(1,size); |
|
|
|
|
|
|
|
|
|
|
|
% |
|
|
|
% * Call the bisection method for each lambda value for each function and |
|
|
|
% keep the number of iterations needed. |
|
|
|
% * Plot the iterations k(lambda) for each function |
|
|
|
% |
|
|
|
i = 0; |
|
|
|
for f = funs |
|
|
|
i = i + 1; |
|
|
|
j = 0; |
|
|
|
for l = lambda |
|
|
|
j = j + 1; |
|
|
|
[a, b, k(j)] = bisection(f, a_0, b_0, epsilon, l); |
|
|
|
end |
|
|
|
subplot(1, 3, i) |
|
|
|
plot(lambda, k, '-b', 'LineWidth', 1.0) |
|
|
|
title(titles(i), 'Interpreter', 'latex') |
|
|
|
xlabel('lambda') |
|
|
|
ylabel('Iterations') |
|
|
|
end |
|
|
|
|
|
|
|
|