|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687 |
- function [a, b, N, n] = min_fibonacci(fun_expression, alpha, beta, epsilon, lambda)
- % Fibonacci method for finding the local minimum of a function.
- %
- % fun_expr: (symbolic expression over x) The symbolic expression of the
- % objective function
- % alpha: (number) The starting point of the interval in which we seek
- % for minimum
- % beta: (number) The ending point of the interval in which we seek
- % for minimum
- % epsilon: (number) The epsilon value (the interval of the last step)
- % lambda: (number) The lambda value (accuracy)
- %
- % return:
- % a: (vector) Starting points of the interval for each iteration
- % b: (vector) Ending points of the interval for each iteration
- % N: (number) The number of iterations needed.
- % nn: (number) The calls of objective function fun_expr
- %
-
- % Error checking
- if alpha > beta || lambda <= 0 || epsilon <= 0
- error ('Input criteria not met')
- end
-
- % Use Binet's formula instead of matlab's recursive fibonacci
- % implementation
- fibonacci = @(n) ( ((1 + sqrt(5))^n - (1 - sqrt(5))^n) / (2^n * sqrt(5)) );
-
- % Init variables
- a = alpha;
- b = beta;
- n = 0;
- fun = matlabFunction(fun_expression);
-
- % wrapper call count function
- function r = count_fun(x)
- n = n + 1;
- r = fun(x);
- end
-
- % calculate number of iterations
- N = 0;
- while fibonacci(N) < (b(1) - a(1)) / lambda
- N = N + 1;
- end
-
-
- % calculate x1, x2 of the first iteration, since the following iteration
- % will not require to calculate both
- x_1 = a(1) + (fibonacci(N-2) / fibonacci(N)) * (b(1) - a(1));
- x_2 = a(1) + (fibonacci(N-1) / fibonacci(N)) * (b(1) - a(1));
- f1 = count_fun(x_1);
- f2 = count_fun(x_2);
-
- % All but the last calculation
- for k = 1:N-2
- % set new search interval
- if f1 <= f2
- a(k+1) = a(k);
- b(k+1) = x_2;
- x_2 = x_1;
- f2 = f1;
- x_1 = a(k+1) + (fibonacci(N-k-2) / fibonacci(N-k)) * (b(k+1) - a(k+1));
- f1 = count_fun(x_1);
- else
- a(k+1) = x_1;
- b(k+1) = b(k);
- x_1 = x_2;
- f1 = f2;
- x_2 = a(k+1) + (fibonacci(N-k-1) / fibonacci(N-k)) * (b(k+1) - a(k+1));
- f2 = count_fun(x_2);
- end
- end
-
- % Last calculation
- x_2 = x_1 + epsilon;
- f2 = count_fun(x_2);
- if f1 <= f2
- a(N) = a(N-1);
- b(N) = x_1;
- else
- a(N) = x_1;
- b(N) = b(N-1);
- end
-
- end
-
|