|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- function [] = iterations_over_lambda(method)
- % Calculate and plot iteration needed for different lambda values.
- %
- % method: the minimum calculation method
- % * bisections
- % * golden_section
- % * fibonacci
- % * bisection_der
- % return:
- % none
- %
-
-
- % Load the functions and interval
- GivenEnv;
-
- fig_dir = 'figures';
- if ~exist(fig_dir, 'dir')
- mkdir(fig_dir);
- end
-
- % Setup
- % ========================
- %
- % We need to test against the same lambda values for all the methods in
- % order to compare them. And since epsilon (which is related to lambda)
- % was given for the bisection method, we base our calculations to that.
- %
- %
- % epsilon: e = 0.001
- % lambda: l > 2e =>
- % lambda_min: 0.0021
- % lambda_max: 0.1
- % N: 50 points (50 lambda values)
-
- N = 50;
- epsilon = 0.001;
- lambda_min = 0.0021;
- lambda_max = 0.1;
- lambda = linspace(lambda_min, lambda_max, N);
- k = zeros(1, N); % preallocate k
- n = zeros(1, N); % preallocate n
-
-
- %
- % Call the minimum calculation method for each lambda value for each
- % function and keep the number of iterations needed.
- % Then plot and save the # of iterations k(lambda) for each function.
- %
- % note: In order to use the same method call for all methods, we force a
- % common interface for minimum method functions. Thus some arguments
- % will not be needed for some methods (epsilon is not needed for
- % bisection _der for example).
- %
-
- figure('Name', "iterations_over_lambda_" + char(method), 'NumberTitle', 'off');
- set(gcf, 'Position', [100, 100, 1280, 600]); % Set the figure size to HD
-
- disp(" ");
- for i = 1:length(funs)
- for j = N:-1:1
- [a, b, k(j), n(j)] = method(funs(i), a_0, b_0, epsilon, lambda(j));
- end
-
- fprintf('%20s(%34s ): [a, b]= [%f, %f], iters(min, max)= (%d, %d), calls(min, max)= (%d, %d)\n', ...
- char(method), char(funs(i)), a(end), b(end), k(N), k(1), n(N), n(1) );
- subplot(1, length(funs), i);
- plot(lambda, n, '-b', 'LineWidth', 1.0);
- title(titles(i), 'Interpreter', 'latex', 'FontSize', 16);
- xlabel('lambda');
- ylabel("Calls of f" + i);
- end
-
-
- %
- % Print and save the figures
- %
- %fig_epsc = fullfile(fig_dir, "iter_over_lambda_" + char(method) + ".epsc");
- fig_png = fullfile(fig_dir, "iter_over_lambda_" + char(method) + ".png");
-
- %print(gcf, fig_epsc, '-depsc', '-r300');
- print(gcf, fig_png, '-dpng', '-r300');
-
- close(gcf);
-
-
|