FuzzySystems/Work 4/source/Scenario2.log

236 lines
5.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Scenario 2 - Epileptic Seizure Classification
================================================
Configuration loaded: 3 folds, 2 feature options, 2 radius options.
Loading dataset from ./Datasets/epileptic_seizure_data.csv ...
Dataset loaded: 11500 samples, 178 features, 5 classes.
Splitting data into train/val/test (60/20/20%)...
-> train: 6900 val: 2300 test: 2300
Applying z-score normalization...
GRID SEARCH (features × radius) using 3-fold CV
[GRID] features= 5, radius=0.50 ...
-> Fold 1/3 ...
ANFIS info:
Number of nodes: 92
Number of linear parameters: 7
Number of nonlinear parameters: 70
Total number of parameters: 77
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 7
Minimal training RMSE = 1.13032
Minimal checking RMSE = 1.13236
Overall Accuracy: 30.61%
Cohen's Kappa : 0.169
kappa=0.169 rules=7
-> Fold 2/3 ...
ANFIS info:
Number of nodes: 140
Number of linear parameters: 11
Number of nonlinear parameters: 110
Total number of parameters: 121
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 11
Minimal training RMSE = 1.12499
Minimal checking RMSE = 1.15105
Overall Accuracy: 39.43%
Cohen's Kappa : 0.289
kappa=0.289 rules=11
-> Fold 3/3 ...
ANFIS info:
Number of nodes: 128
Number of linear parameters: 10
Number of nonlinear parameters: 100
Total number of parameters: 110
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 10
Minimal training RMSE = 1.13166
Minimal checking RMSE = 1.12551
Overall Accuracy: 34.91%
Cohen's Kappa : 0.225
kappa=0.225 rules=10
-> mean Kappa=0.227 mean rules=9
[GRID] features= 5, radius=0.75 ...
-> Fold 1/3 ...
ANFIS info:
Number of nodes: 68
Number of linear parameters: 5
Number of nonlinear parameters: 50
Total number of parameters: 55
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 5
Minimal training RMSE = 1.12389
Minimal checking RMSE = 1.12597
Overall Accuracy: 33.17%
Cohen's Kappa : 0.210
kappa=0.210 rules=5
-> Fold 2/3 ...
ANFIS info:
Number of nodes: 68
Number of linear parameters: 5
Number of nonlinear parameters: 50
Total number of parameters: 55
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 5
Minimal training RMSE = 1.15261
Minimal checking RMSE = 1.16568
Overall Accuracy: 34.30%
Cohen's Kappa : 0.240
kappa=0.240 rules=5
-> Fold 3/3 ...
ANFIS info:
Number of nodes: 68
Number of linear parameters: 5
Number of nonlinear parameters: 50
Total number of parameters: 55
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 5
Minimal training RMSE = 1.14349
Minimal checking RMSE = 1.13975
Overall Accuracy: 34.65%
Cohen's Kappa : 0.226
kappa=0.226 rules=5
-> mean Kappa=0.225 mean rules=5
[GRID] features= 8, radius=0.50 ...
-> Fold 1/3 ...
ANFIS info:
Number of nodes: 209
Number of linear parameters: 11
Number of nonlinear parameters: 176
Total number of parameters: 187
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 11
Minimal training RMSE = 1.11568
Minimal checking RMSE = 1.12592
Overall Accuracy: 35.26%
Cohen's Kappa : 0.224
kappa=0.224 rules=11
-> Fold 2/3 ...
ANFIS info:
Number of nodes: 209
Number of linear parameters: 11
Number of nonlinear parameters: 176
Total number of parameters: 187
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 11
Minimal training RMSE = 1.08705
Minimal checking RMSE = 1.11471
Overall Accuracy: 35.48%
Cohen's Kappa : 0.226
kappa=0.226 rules=11
-> Fold 3/3 ...
ANFIS info:
Number of nodes: 209
Number of linear parameters: 11
Number of nonlinear parameters: 176
Total number of parameters: 187
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 11
Minimal training RMSE = 1.12397
Minimal checking RMSE = 1.12198
Overall Accuracy: 35.65%
Cohen's Kappa : 0.230
kappa=0.230 rules=11
-> mean Kappa=0.227 mean rules=11
[GRID] features= 8, radius=0.75 ...
-> Fold 1/3 ...
ANFIS info:
Number of nodes: 119
Number of linear parameters: 6
Number of nonlinear parameters: 96
Total number of parameters: 102
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 6
Minimal training RMSE = 1.12245
Minimal checking RMSE = 1.12803
Overall Accuracy: 32.70%
Cohen's Kappa : 0.196
kappa=0.196 rules=6
-> Fold 2/3 ...
ANFIS info:
Number of nodes: 173
Number of linear parameters: 9
Number of nonlinear parameters: 144
Total number of parameters: 153
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 9
Minimal training RMSE = 1.10065
Minimal checking RMSE = 1.12512
Overall Accuracy: 37.09%
Cohen's Kappa : 0.251
kappa=0.251 rules=9
-> Fold 3/3 ...
ANFIS info:
Number of nodes: 101
Number of linear parameters: 5
Number of nonlinear parameters: 80
Total number of parameters: 85
Number of training data pairs: 4600
Number of checking data pairs: 2300
Number of fuzzy rules: 5
Minimal training RMSE = 1.13562
Minimal checking RMSE = 1.13557
Overall Accuracy: 33.00%
Cohen's Kappa : 0.196
kappa=0.196 rules=5
-> mean Kappa=0.214 mean rules=7
BEST HYPERPARAMS
features=5 radius=0.50 CV Kappa=0.227 mean rules=9
Training final model on train+val with best params ...
ANFIS info:
Number of nodes: 80
Number of linear parameters: 6
Number of nonlinear parameters: 60
Total number of parameters: 66
Number of training data pairs: 9200
Number of checking data pairs: 2300
Number of fuzzy rules: 6
Minimal training RMSE = 1.14268
Minimal checking RMSE = 1.1463
Final training complete: 6 rules.
Evaluating on TEST set ...
Overall Accuracy: 29.78%
Cohen's Kappa : 0.158
[TEST RESULTS]
OA = 29.78 %
Kappa= 0.158
Rules= 6
Generating figures ...
Done. Figures saved in: figures_scn2